
MASSIVELY PARALLEL COMPUTATION USING GRAPHICS

PROCESSORS WITH APPLICATION TO OPTIMAL

EXPERIMENTATION IN DYNAMIC CONTROL

SERGEI MOROZOV AND SUDHANSHU MATHUR

Abstract. The rapid growth in the performance of graphics hardware, coupled with re-

cent improvements in its programmability has lead to its adoption in many non-graphics
applications, including a wide variety of scientific computing fields. At the same time,

a number of important dynamic optimal policy problems in economics are athirst of

computing power to help overcome dual curses of complexity and dimensionality. We
investigate if computational economics may benefit from new tools on a case study of

imperfect information dynamic programming problem with learning and experimenta-

tion trade-off, that is, a choice between controlling the policy target and learning system
parameters. Specifically, we use a model of active learning and control of a linear au-

toregression with the unknown slope that appeared in a variety of macroeconomic policy
and other contexts. The endogeneity of posterior beliefs makes the problem difficult in

that the value function need not be convex and the policy function need not be con-

tinuous. This complication makes the problem a suitable target for massively-parallel
computation using graphics processors (GPUs). Our findings are cautiously optimistic

in that new tools let us easily achieve a factor of 15 performance gain relative to an

implementation targeting single-core processors. Further gains up to a factor of 26 are
also achievable but lie behind a learning and experimentation barrier of their own. Draw-

ing upon experience with CUDA programming architecture and GPUs provides general

lessons on how to best exploit future trends in parallel computation in economics.

Keywords: Graphics Processing Units · CUDA programming · Dynamic programming ·
Learning · Experimentation

JEL Classification: C630 · C800

1. Introduction

Under pressure to satisfy insatiable demand for high-definition real-time 3D graphics
rendering in the PC gaming market, Graphics Processing Units (GPUs) have evolved over
the past decade far beyond simple video graphics adapters. Modern GPUs are not single
processors but rather are programmable, highly parallel multi-core computing engines with
supercomputer-level high performance floating point capability and memory bandwidth.
They commonly reach speeds of hundreds of billions of floating point operations per second
(GFLOPS) and some contain several billion transistors.

Because GPU technology benefits from large economies of scale in the gaming market,
such supercomputers on a plug-in board have become very inexpensive for the raw horse-
power they provide. Scientific community realized that this capability could be put to use
for general purpose computing. Indeed, many mathematical computations, such as matrix
multiplications or random number generation, which are required for complex visual and
physics simulations in games are also the same computations prevalent in a wide variety
of scientific computing applications from computational fluid dynamics to signal process-
ing to cryptography to computational biochemistry. Graphics card manufacturers, such as

Date: April 4, 2011.
Version 2.00.

We thank participants of 2009 International Conference on Computing in Economics and Finance and

2010 Econometric Society World Congress for insightful comments. We are grateful to the referee for the
valuable suggestions to strengthen the presentation of our results. All remaining errors are our own. The

source code for our programs can be retrieved from http://www.wavelet3000.org website.

1

2 SERGEI MOROZOV AND SUDHANSHU MATHUR

AMD/ATI and NVIDIA, has supported the trend toward general purpose computing by
widening the performance edge, by making GPUs more programmable, by including ad-
ditional functionality such as single and double precision floating point capability and by
releasing software development kits.

The advent of GPUs as a viable tool for general purpose computing parallels the recent
shift in the microprocessor industry from maximizing single-core performance to integrating
multiple cores to distributed computing (Creel and Goffe, 2008). GPUs are remarkable in the
level of multi-core integration. For example, high-performance enthusiast GeForce GTX580
GPU from NVIDIA contains 16 multiprocessors each consisting of 32 scalar processor cores,
for a total of 512 (NVIDIA, 2011). As each scalar processor core is further capable of running
multiple threads, it is clear that GPUs represent the level of concurrency today that cannot
be found in any other consumer platform. Inevitably, as CPU-based computing is moving in
the same massively multi-core (”many-core”) direction, it is time now to rethink algorithms
to be aggressively parallel. Otherwise, if a solution is not fast enough, it will never be (Buck,
2005).

Parallel computing in economics is not widespread but does have a fairly long tradi-
tion. Chong and Hendry (1986) developed an early parallel Monte Carlo simulation for the
econometric evaluation of linear macro-economic models. Coleman (1992) takes advantage
of parallel computing to solve discrete-time nonlinear dynamic models expressed as recur-
sive systems with an endogenous state variable. Nagurney, Takayama, and Zhang (1995)
and Nagurney and Zhang (1998) use massively parallel supercomputers to model dynamic
systems in spatial price equilibrium problems and traffic problems. Doornik, Hendry, and
Shephard (2002) provide simulation-based inference in a stochastic volatility model, Ferrall
(2003) optimizes finite mixture models in parallel, while Swann (2002) develops parallel
implementation of maximum likelihood estimation. A variety of econometric applications
for parallel computation is discussed in Doornik, Shephard, and Hendry (2006). Sims,
Waggoner, and Zha (2008) employ grid computing tools to study Bayesian algorithms for
inference in large-scale multiple equation Markov-switching models. Tutorial of Creel and
Goffe (2008) urges further application of parallel techniques by economists, whereas Creel
(2005) identifies steep learning curve and expensive hardware as the main adoption barriers.
None of these studies take advantage of GPU technology.

Financial engineering turned to parallel computing with the emergence of complex deriva-
tive pricing models and popular use of Monte-Carlo simulations. Zenios (1999) offers an early
synthesis of the evolution of high-performance computing in finance. Later work includes
Pflug and Swietanowski (2000) on parallel optimization methods for financial planning un-
der uncertainty, Abdelkhalek, Bilas, and Michaelides (2001) on parallelization of portfolio
choice, Rahman, Thulasiram, and Thulasiraman (2002) on neural network forecasting stock
prices using cluster technology, Kola, Chhabra, Thulasiram, and Thulasiraman (2006) on
real-time option valuation, etc. Perhaps due to better funding and more acute needs, quanti-
tative analysts on Wall Street trading desks took note of the GPU technology (Bennemann,
Beinker, Eggloff, and Guckler, 2008) ahead of academic economists.

To the best of our knowledge, ours is one of the first attempts to accelerate economic

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 3

that characterize posterior beliefs. These evolving beliefs thereby become part of the three-
dimensional system state vector to keep track of. The dimension of the state vector matters
not only because Bayes rule is nonlinear but, more importantly, because the optimal value
function need not be convex, whereas the policy function need not be continuous (Kendrick,
1978; Easley and Kiefer, 1988; Wieland, 2000). Functional approximation methods that
rely on smoothness may not work and one is compelled to use brute-force discretization.
The endogeneity of information is what makes the problem so complex even when the state
dimension is low. This difficulty makes the problem a suitable target for the GPU-based
computation.

The most compute-intensive part of the algorithm is a loop updating the value function
at all points on a three-dimensional grid. Since these points can be updated independently,
the problem can be parallelized easily. For the multi-core CPU-based computation, we use
OpenMP compiler directives (Chandra, Menon, Dagum, and Kohr, 2000; Chapman, Jost,
and van der Paas, 2007) to generate as many as four threads to run on a state-of-the-art
workstation with a quad-core CPU. For the GPU-based computation, we use NVIDIA’s
CUDA platform in conjunction with a GeForce GTX280 card supporting this technology.
The promise of GPU acceleration is realized as we see initial speedups up to a factor of 15
relative to an optimized CPU implementation. With some additional performance tuning
we are able to reach a factor of 26 in some cases.

The paper is laid out as follows. Section 2 explains the new concepts of GPU programming
and available hardware and software resources. Sections 3 and 4 are dedicated to our case
study of an imperfect information dynamic programming problem. The former sets up
theoretical background, while the latter contrasts CPU- and GPU-based approaches in terms
of program design and performance. Section 5 summarizes our findings and offers a vision
of what is to come.

2. GPU Programming

2.1. History. Early attempts to harness GPUs for general purpose computing (so called
GPGPU) had to express their algorithms using existing graphics application programming
interfaces (APIs): OpenGL (Kessenich, Baldwin, and Rost, 2006) and DirectX (Bargen and
Donnelly, 1998). The approach was awkward and thus unpopular.

Over the past decade, graphics cards evolved to become programmable GPUs and on
to become fully programmable data-parallel floating-point computing engines. The two
largest discrete GPU vendors, AMD/ATI and NVIDIA, have supported this trend by re-
leasing software tools to simplify the development of GPGPU applications and adding hard-
ware support for programming instructions and higher precision arithmetics to avoid cast-
ing computations as graphics operations. In 2006, AMD/ATI released Close-to-the-metal
(CTM), a relatively low-level interface for GPU programming that bypasses the graphics
API. NVIDIA, also in 2006, took a more high-level approach with its Compute Unified
Device Architecture (CUDA) interface library. CUDA extends C programming language to
allow the programmer to delegate portions of the code for execution on GPU.2 Although
AMD FireStream technology later included software development kit with higher-level lan-
guage support, NVIDIA CUDA ecosystem was the most mature at the inception of our
project and was selected as a testbed. Further developments aimed at leveraging many-core
coprocessors include OpenCL cross-platform effort (Munshi, Gaster, Mattson, Fung, and
Ginsburg, 2011), Intel Ct programming model (Ghuloum, Sprangle, Fang, Wu, and Zhou,
2007), and Microsoft DirectCompute (Boyd and Schmit, 2009).3

General purpose computing on GPUs has come a long way since the initial interest in
the technology in 2003-2004. On the software side, there are now major applications across
the entire spectrum of high performance computing (see, e.g., Hwu (2011) for a recent

2Mathematica natively supports GPU computing via CUDALink, Matlab’s support is in its Parallel
Computing Toolbox, while third party wrappers are also available for Python, Fortran, Java and IDL.

3Heterogeneous cross-vendor device management can be very tedious. See Kirk and Hwu (2010) for some

illustrative examples.

4 SERGEI MOROZOV AND SUDHANSHU MATHUR

snapshot), except perhaps computational economics. On the hardware side, many of the
original limitations of GPU architectures have been removed and what remains is mostly
related to the inherent trade-offs of the massively threaded processors.

2.2. Data Parallel Computing. Until recently, most tools for parallel processing were
largely dedicated to task parallel models. The task parallel model is built around the idea
that parallelism can be extracted by constructing threads that each have their own goal or
task to complete. While most parallel programming is task parallel, there is another form
of parallelism that can be exploited.

In contrast to the task parallel model, data parallel programming runs the same block of
code on hundreds or even thousands of data points. Whereas typical multi-threaded program
to be executed on moderately multi-core/multi-CPU computer handles only a small number
of threads (typically no more than 32), a data parallel program to do something like image
processing may spawn millions of threads to do the processing on each pixel. The way
these threads are actually grouped and handled will depend on both the way the program
is written and the hardware the program is running on.

2.3. CUDA Programming. CUDA is one way to implement data parallel programming.
CUDA is a general purpose data-parallel computing interface library. It consists of runtime
library, set of function libraries, C/C++ development toolkit, extensions to the standard C
programming language and a hardware abstraction mechanism that hides GPU hardware
from developers. It allows independent and even concurrent execution of both conventional
code targeting the host CPU and data parallel code targeting the GPU device. Like OpenMP
(Chandra, Menon, Dagum, and Kohr, 2000) and unlike MPI (Gropp, Lusk, Skjellum, and
Thakur, 1999), CUDA adheres to the shared memory model. Furthermore, although CUDA
requires writing special code for parallel processing, explicitly managing threads is not re-
quired.

CUDA hardware abstraction mechanism exposes a virtual machine consisting of a large
number of streaming multi-processors (SMs). A multiprocessor consists of multiple scalar
processors (SPs), each capable of executing independent threads. Each multiprocessor has
four types of on-chip memory: one set of registers per SP, shared memory, constant read-only
memory cache and read-only texture cache.

The main programming concept in CUDA is the notion of a kernel function. A kernel
function is a single subroutine that is invoked simultaneously across multiple thread in-
stances. Threads are organized into one-, two-, or three-dimensional blocks which in turn
are laid out on a two-dimensional grid. Blocks are completely independent of each other,
whereas threads within a block are mapped entirely and execute to completion on a single
streaming multiprocessor.4 Far more threads can be resident on a multiprocessor than there
are scalar processors. Such over-subscription is a key to hiding memory latencies. If one
block stalls waiting on a memory access, another block can proceed, thus keeping the GPU
occupied. In order to optimize a CUDA application, one should try to achieve an optimal
grid topology in terms of size and number of blocks. More threads in a block reduce the
effect of memory latencies, but it will also reduce the number of available registers.

Every block is partitioned into several groups of 32 threads called warps. All threads
in the same warp execute the same program. Execution is the most efficient if all threads
in a warp execute in lockstep. Otherwise, threads in a warp diverge, i.e., follow different
execution paths. If this occurs, the different execution paths have to be serialized leaving
some threads idle.

Managing memory hierarchy is another key to high performance. Since there are sev-
eral kinds of memory available on GPUs with different access times and sizes, the effective
bandwidth can vary significantly depending on the access pattern for each type of mem-
ory, ordering of the data access, use of buffering to minimize data exchange between CPU

4A block is a convenient abstraction level in the hierarchy of thread organization, but it does not equate
to a physical hardware resource: at runtime, multiple thread blocks may be executed concurrently on the

same multiprocessor.

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 5

and GPU, overlapping inter-GPU communication with computation (Kirk and Hwu, 2010;
NVIDIA, 2011), etc. Memory access to local shared memory including constant and texture
memory and well aligned access to global memory are particularly fast. Indeed, ensuring
proper memory access can achieve a large fraction of the theoretical peak memory bandwidth
which is on the order of 100-200 GB/sec for today’s GPU boards.

The main CUDA process works on a host CPU from where it initializes a GPU, distributes
video and system memory, copies constants into video memory, starts several copies of kernel
processes on a graphics card, copies results from video memory, frees memory, and shuts
down. CUDA-enabled programs can interact with graphics APIs, for example to render
data generated in a program.

2.4. CUDA C. CUDA’s extensions to the C programming language are relatively minor.
Each function declaration can include a function type qualifier determining whether the
function will execute on the CPU or the GPU and if it is a GPU function, whether it is
callable from the CPU. Variable declarations also include qualifiers specifying where in the
memory hierarchy the variable will reside. Finally, kernels have special thread-identification
variables while calls to GPU functions must include an execution configuration specifying
grid and thread-block topology and allocations of shared memory on each SM. Functions
executed by a GPU have the following limitations: no recursion, no static variables inside
functions, no variable number of arguments. Two memory management types are supported:
linear memory with pointer access, and CUDA-arrays with access only through texture fetch
functions.

Files of the source CUDA C or C++ code are compiled with nvcc, which is just a shell
to other tools: cudacc, g++, cl, etc. nvcc generates: CPU code, which is compiled together
with other parts of the application, written in pure C or C++, and special object code
targeting a GPU.

2.5. CUDA Fortran. Since there is a vast body of Fortran code in daily use throughout
the research community, NVIDIA worked with The Portland Group (PGI) to develop a
CUDA Fortran compiler. PGI CUDA Fortran compiler has two usage modes. The first
is akin to OpenMP in that it uses accelerator directives to implicitly split portions of the
code between CPU and GPU and map loops to automatically use parallel threads. It does
not currently include support to automatically control two or more GPUs from the same
accelerator region. The second mode is a lower-level explicit programming model that allows
writing Fortran kernel code, provides language extensions to indicate where a variable or
an array is stored and where a subroutine or a function is executed. CUDA Fortran has
some advantages over CUDA C since a number of tedious declarations, allocations and data
transfers are hidden (The Portland Group, 2010b,a).

In addition to CUDA Fortran, there exists a Fortran-to-CUDA code translator supporting
the most commonly used Fortran 95 language constructs, with an exception of input/output
statements.

2.6. CUDA-supported Hardware. CUDA parallel computing architecture is supported
on most GeForce, Quadro and Tesla products of post-2007 vintage. Whereas GeForce and
Quadro target consumer gaming and professional visualization, respectively, the Tesla prod-
uct line is dedicated to high-performance computing and offers exclusive features such as
memory error correction, enhanced double precision performance, larger on-board memory,
support for clustering, etc. In each product line, the more recent hardware typically supports
more extensive feature list known as compute capability. For example, only devices of capa-
bility 1.3 and later support double precision floating point operations. GeForce and Quadro
GPUs can be installed in a desktop or a laptop computer. Tesla GPUs can be installed
as display-less cards in a desktop PC or as integrated GPU-CPU servers with embedded
Tesla M-class GPU modules. The latter Tesla GPU instances can be rented on-demand
from cloud computing providers based on by-the-hour pricing. The fastest supercomputer

6 SERGEI MOROZOV AND SUDHANSHU MATHUR

in the world (as of November 2010 TOP-500 list), Tianhe-1A, also contains a large number
of Tesla GPUs.

2.7. CUDA Resources. As the CUDA development environment is available freely, it is
the learning curve that is the steepest adoption barrier. NVIDIA CUDA technology is now
being taught at universities around the world, typically in computer science or engineering
departments. New textbooks are being written, e.g., Kirk and Hwu (2010). Numerous sem-
inars, tutorials, technical training courses and third-party consulting services are also avail-
able to help one get started. Website http://www.nvidia.com/object/cuda education.html
collects some of these resources.

3. Case Study: Dynamic programming solution of learning and active
experimentation problem

In this section we introduce an imperfect information optimal control problem, dynamic
programming approach as well as a couple of useful suboptimal policies.

3.1. Problem Formulation. The decision-maker minimizes a discounted intertemporal
cost-to-go function with quadratic per-period losses,

(1) min
{ut}∞t=0

E0

[∞∑
t=0

�t
(
(xt − x̄)2 + !(ut − ū)2

)]
;

subject to the evolution law of policy target xt from a class of linear first-order autoregressive
stochastic processes

(2) xt = �+ �ut + xt−1 + �t; �t ∼ N (0; �2
�):

� ∈ [0; 1) is the discount factor, x̄ is the stabilization target, ū is the ”costless” control, ! ≥ 0
gives relative weight to the deviations of ut from ū.5 The variance of the shock, �2

� , is known,
and so are the constant term � and the autoregressive persistence parameter ∈ (−1; 1).
Equation (2) is a stylized representation of many macroeconomic policy problems, such as
monetary or fiscal stabilization, exchange rate targeting, pricing of government debt, etc.

Only one of the parameters that govern the conditional mean of xt, namely, the slope
coefficient �, is unknown. Initially, prior belief about � is Gaussian:

(3) � ∼ N (�0;Σ0) :

Gaussian prior (3) combined with normal likelihood (2) yields Gaussian posterior (Judge,
Lee, and Hill, 1988), and so at each point in time the belief about unknown � is conditionally
normal and is completely characterized by mean �t and variance Σt (sufficient statistics).
Upon observing a realization of xt, these are updated in accordance with the Bayes law:6

Σt+1 =

(
Σ−1t +

1

�2
�

u2t

)−1
;

�t+1 = Σt+1

(
1

�2
�

utxt + Σ−1t �t

)
:

(4)

Note that the evolution of the variance is completely deterministic.
Under distributional assumptions (2) and (3), the imperfect information problem is trans-

formed into a state-space form by defining the extended state containing both physical and
informational components:

(5) St = (xt; �t+1;Σt+1)′ ∈ S ⊆ R3:

5Under monetary policy interpretation of the model, ω describes flexibility of monetary policy with

respect to its dual objectives of inflation and output stability (Svensson, 1997).
6We use subscript t + 1 to denote beliefs after xt is realized but before a choice of ut+1 is made at the

beginning of period t + 1. Technically, it means that ut+1 is measurable with respect to the filtration Ft

generated by histories of the stochastic process up until time t. This timing convention accords with that

of Wieland (2000).

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 7

As a useful shorthand, encode policy target process (2) and Bayesian updating (4) via
mapping

(6) St+1 = B(St; xt+1; ut+1):

3.2. Dynamic programming. Our objective is to find the optimal policy function u∗(S)
that minimizes intertemporal cost-to-go (1) subject to the evolution of the extended state
(6), given an initial state S. It is also of interest to compare the value (cost-to-go) of the
optimal policy to that of certain simple alternative policy rules. Thus, we will also require
computation of the cost-to-go functions of some simple policies.

3.2.1. Inert uninformative policy. So called inert uninformative policy simply sets control
impulse to zero, regardless of the current physical state xt or the current beliefs. Such policy
is not informative for Bayesian learning in that it leaves the posterior beliefs exactly equal
to the prior beliefs. In turn, this allows a closed-form solution for the cost-to-go function
corresponding to inert policy:

V 0(St) =
(�+ xt − x̄)

2 − �
(
(x̄)2 − �2 − x̄(2�− x̄) + x2t (1 +)− 2xt(x̄− �+ 2x̄)

)
(1− �)(1− �)(1− 2�)

+
3�2 (xt − x̄)

2

(1− �)(1− �)(1− 2�)
+

�2
�

(1− �)(1− 2�)
+
! (ū)

2

1− �
:

(7)

Omitting time subscripts, it could be shown that the inert policy cost-to-go function V 0

satisfies a recursive relationship:

(8) V 0(x; �;Σ) = (�+ x− x̄)
2

+ !ū2 + �2
� + �EV 0(�+ x+ �; �;Σ):

Relationship (8) can serve as a basis of an iterative computational algorithm, starting from

any simple initial guess, for example, Ṽ 0 ≡ 0. Upon convergence, the recursive algorithm,
policy iteration in disguise, should approximately recover (7). This provides a simple test
of correctness of our CPU-based and GPU-based computations.7

Another use of the inert uninformative policy is to provide explicit bounds on the opti-
mal policy with experimentation, u∗t+1, given the current state St, via a simple quadratic
inequality
(9)

Et
[
(xt+1 − x̄)

2
+ !

(
u∗t+1 − ū

)2] ≤ Et

[∞∑
�=1

��−1
(
(xt+� − x̄)2 + !(u∗t+� − ū)2

)]
≤ V 0 (St) :

Asymptotically, the bounds are linear in the x direction, converge to a positive constant in
the � direction and converge to zero in the Σ direction.

3.2.2. Cautionary myopic policy. Cautionary myopic policy takes account of coefficient un-
certainty but disregards losses incurred in periods beyond current. It optimizes the expected
one-period-ahead loss function

L(St; ut+1) =

∫ (
(�+ �ut+1 + xt + �t+1 − x̄)2 + !(ut+1 − ū)2

)
p(�|St)q(�t+1)d�d�t+1

=
(
Σt+1 + �2

t+1 + !
)
u2t+1 + 2 ((�t+1)xt − �t+1x̄− !ū)ut+1

+ !ū2 + 2x2t + x̄2 + �2
� − 2x̄xt;

(10)

7Since our numerical implementation restricts the state space to a three-dimensional rectangular cuboid

and assumes constant cost-to-go function beyond its boundary, analytical and numerical solutions will

necessarily be different near the boundary. However, if the numerical solution is implemented correctly, its
final values at any fixed interior point will converge to the analytical solution as the cuboid is progressively

expanded while the grid spacing remains constant. This is indeed what we have observed.

8 SERGEI MOROZOV AND SUDHANSHU MATHUR

where p(�|St) and q(�t) represent the posterior belief density and the density of state shocks,
respectively. The solution can be found in closed form:

(11) uMYOP
t+1 = − �

Σ + �2 + !
xt +

�(x̄− �) + !ū

Σ + �2 + !
:

Cautionary myopic policy is a useful and popular benchmark in studies of the value of
experimentation (Prescott, 1972; Easley and Kiefer, 1988; Lindoff and Holst, 1997; Wieland,
2000; Brezzia and Lai, 2002). From (9), it follows that the myopic policy rule is precisely
the mid-point of the explicit bounds on the optimal policy with experimentation. Thus, it
is likely to be a good initial guess for the optimization algorithm searching for the actively
optimal policy with experimentation, see sections 3.2.3 and 4.1.

The cost-to-go function of the cautionary myopic policy is not explicit but satisfies a
recursive functional equation analogous to (8):

VMYOP (x; �;Σ) = E
(
�+ �uMYOP (x; �;Σ) + x− x̄

)2
+ !(uMYOP (x; �;Σ)− ū)2 + �2

�

+ �EVMYOP
(
�+ �uMYOP (x; �;Σ) + x+ �; �′;Σ′

)
;

(12)

where �′ and Σ′ are the future beliefs given by Bayesian updating (4).8 A method to find
an approximate solution of (12) is policy iteration on a discretized state space (i.e., on a
grid). The iteration starts with an arbitrary initial guess which is then plugged into the
right hand side of (12). Improved guess is obtained upon evaluation of the left hand side at
every gridpoint. The process is continued until convergence to an approximate cost-to-go
function of the cautionary myopic policy. For a formal justification of the algorithm, see
Bertsekas (2005, 2001).

3.2.3. Optimal policy with experimentation. Unlike the two previous policies, the optimal
policy that takes full account of the value of experimentation is not explicit. It is given by
a solution of the Bellman functional equation of dynamic programming,

(13) V (St) = min
{ut+1}

{
L(St; ut+1) + �

∫
V (St+1) p(�; �t+1|St+1)d�d�t+1

}
;

where L(St; ut+1) as in (10). Although the stochastic process under control is linear and
the loss function is quadratic, the belief updating equations are non-linear, and hence the
dynamic optimization problem is more difficult than problems in the linear quadratic class.
Following Easley and Kiefer (1988), it could be shown that the Bellman functional operator
is a contraction and a stationary optimal policy exists such that the corresponding value
function is continuous and satisfies the above Bellman equation. Solution of (13) is a
mapping u∗ : S → R from the extended state space to policy choices. Based on above
theoretical arguments, an approximate solution can be obtained by the recursive use of
discretized version of (13) starting from some initial guess (i.e., value iteration). Upon
convergence, one is left with both approximate policy and cost-to-go functions. This process
is computationally more demanding than for the earlier two policies due to an additional
minimization step.

4. CPU-based versus GPU-based Computations

4.1. CPU-based computation. The approximations to the optimal policy and value func-
tion follow the general recursive numerical dynamic programming methods outlined above.
Purely for simplicity, we omit several acceleration techniques. In particular, we do not in-
troduce alternating approximate policy evaluation steps or asynchronous Gauss-Seidel-type
sweeps of the state space (Morozov, 2008, 2009a,b). Those are helpful but camouflage the
benefits accruing to massively multithreaded implementation.

8It is this nonlinear dynamics of beliefs that precludes closed-form computation of the value function.

Under constant beliefs, the cost-to-go function would be quadratic in x, with explicit closed-form coefficients.

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 9

Since the integration step in (13) (as well as the integration step implicit in 8 and 12)
cannot be carried out analytically, we resort to the Gauss-Hermite quadrature. Further,
the actively optimal policy and cost-to-go functions are represented by means of multi-
linear interpolation on the non-uniform tensor product grid in the state space. The non-
uniform grid is designed to place grid-points more densely in the high curvature areas,
namely in the vicinity of x = x̄ and � = 0. The grid is uniform along the Σ dimension.
Although, in principle, the state space is unbounded, we restricted our attention to a three-
dimensional rectangular cuboid. The boundaries were chosen via an apriori simulation
experiment to ensure that the high curvature regions are completely covered and that all
simulated sequences originating sufficiently deep inside the cuboid remain there for the
entire time span of a simulation. The dynamic programming algorithm was iterated to
convergence with the relative tolerance9 of 1e− 6 for the two suboptimal policies and 1e− 4
for the optimal policy. Univariate minimization uses a safeguarded multiple restart version
of the Brent golden section search (Brent, 1973).10

Table 1 reports runtimes and memory usage of the CPU-based computations for the three
types of policies. These were implemented in Fortran 90 with the outermost loop over the
state space explicitly parallelized using OpenMP directives (Chandra, Menon, Dagum, and
Kohr, 2000; Chapman, Jost, and van der Paas, 2007). The code was compiled in double
precision11 with Intel Fortran compiler for 64-bit systems, version 11.0,12 and run on a high-
end quad-core single CPU workstation utilizing a Core i7 Extreme Edition 965 Nehalem
CPU overclocked to 3.4 GHz. In order to reduce the timing noise, the codes were run four
times and compute times averaged out for each policy type, CPU thread count and grid
size. It should be clear that the deck is intentionally stacked in CPU favor.

Table 1 serves to emphasize very good scaling of the numerical dynamic programming
with respect to the thread count, since communication among different threads is not re-
quired and workload per thread is fairly uniform. For small grid sizes, the overhead of
thread creation and destruction dominates the performance benefit of multiple threads.13

At large grid sizes, memory becomes the limiting factor both in terms of ability to store the
cost-to-go function and to quickly update it in memory.

4.2. GPU-based computation. For our GPU-based computations we used a graphics
card featuring the GTX280 chip. It has 1.4 billion transistors, theoretical peak performance
of 933 Gflops in single precision, peak memory bandwidth of 141.7 Gb/sec and capability
to work on 30,720 threads simultaneously. As of early 2009, it was the highest performing
consumer GPU available. By the time of publication, it lags significantly behind the GPU
performance frontier. For the software stack, we used CUDA version 2.3 for Linux, including
the associated runtime, compiler, debugger, profiler and utility libraries.

9Relative tolerance was defined as relative sup norm distance between consecutive approximations mag-

nified by a factor of δ/(1 − δ) based on MacQueen-Porteus bounds (Porteus and Totten, 1978; Bertsekas,
2001).

10Preliminary efforts to ensure robustness of the minimization step involved testing our method against
the Nelder-Meade simplex method (Spendley, Hext, and Himsworth, 1962; Nelder and Mead, 1965; Lagarias,
Reeds, Wright, and Wright, 1998) with overdispersed multiple starting points (random or deterministic),

simulated annealing (Kirkpatrick, Gelatt Jr., and Vecchi, 1983; Goffe, Ferrier, and Rogers, 1994), direct

search (Conn, Gould, and Toint, 1997; Lewis and Torczon, 2002), genetic algorithm (Goldberg, 1989) and
their hybrids (Zabinsky, 2005; Horst and Paradalos, 1994; Paradalos and Romeijn, 2002). They all yielded

virtually identical results, with occasional small random noise due to the stochastic nature of the search
for optimum. On the other hand, these alternative methods, so well suited to nonconvex and nonsmooth

problems, required significant computational expense, driven primarily by the sharp increase in the number

of function evaluations. Our choice is a compromise between robustness and speed.
11The same code compiled in single precision required more dynamic programming iterations to achieve

convergence to the same tolerance, outweighing the speed benefits of lower precision.
12Intel compilers (Fortran and C) performed significantly better then those from GNU complier collection

(gcc and gfortran).
13

10 SERGEI MOROZOV AND SUDHANSHU MATHUR

T
a
b
l
e

1
.

P
erfo

rm
a
n

ce
sca

lin
g

o
f

C
P

U
-b

a
sed

co
m

p
u

ta
tio

n
u

n
d

er
d

iff
eren

t
p

olicies.

G
rid

siz
e

G
rid

p
o
in
ts

C
P
U

T
h
re

a
d
s

In
e
rt

U
n
in
fo
rm

a
tiv

e
M

y
o
p
ic

O
p
tim

a
l

C
P
U

T
im

e
M
em

o
ry

U
sa
g
e

C
P
U

T
im

e
M
em

o
ry

U
sa
g
e

C
P
U

T
im

e
M
em

o
ry

U
sa
g
e

8
x
8
x
8

5
1
2

1
9
.9
6
E
-0
0
2

1
5
M

9
.3
6
E
-0
0
2

1
5
M

1
.4
3

1
6
M

2
0
.1
6

1
9
M

0
.1
5

1
9
M

0
.7
4

2
0
M

4
0
.2
7

2
8
M

0
.2
2

9
3
M

0
.5
7

9
4
M

1
6
x
1
6
x
1
6

4
,0
9
6

1
0
.9
5

1
5
M

1
.0
1

1
5
M

1
3
.2
2

1
6
M

2
0
.4
7

1
9
M

0
.5
2

1
9
M

7
.0
3

8
6
M

4
0
.3
3

2
8
M

0
.3
5

9
4
M

4
.7
9

9
4
M

3
2
x
3
2
x
3
2

3
2
,7
6
8

1
8
.4
2

1
6
M

9
.7
2

1
6
M

1
2
2
.6
8

1
8
M

2
4
.3
7

2
0
M

4
.9
7

2
0
M

6
3
.5
5

8
7
M

4
2
.7
1

9
4
M

3
.0
1

9
4
M

3
7
.5
6

9
6
M

6
4
x
6
4
x
6
4

2
6
2
,1
4
4

1
7
7
.1
7

2
4
M

9
4
.0
7

2
1
M

1
,0
8
5
.4
7

2
9
M

2
3
9
.4
5

2
8
M

4
7
.5

9
1
M

5
5
9
.1
0

9
8
M

4
2
1
.7
3

9
9
M

2
6
.1
4

9
9
M

3
4
4
.4
3

1
0
3
M

1
2
8
x
1
2
8
x
1
2
8

2
,0
9
7
,1
5
2

1
7
9
8
.4
5

8
1
M

9
6
2
.4
6

6
4
M

9
,9
7
2
.3
9

1
1
1
M

2
3
9
2
.2
6

8
5
M

4
9
1
.4
1

6
8
M

5
,3
0
0
.8
0

1
7
9
M

4
2
1
1
.1
8

9
3
M

2
7
0
.3
7

1
3
8
M

3
,1
3
1
.7
2

1
8
7
M

2
5
6
x
2
5
6
x
2
5
6

1
6
,7
7
7
,2
1
6

1
7
,3
6
8
.5
6

5
2
6
M

9
,8
8
0
.0
6

3
9
8
M

9
8
,8
0
9
.8
9

7
8
3
M

2
3
,7
5
9
.0
2

5
3
0
M

5
,1
5
9
.7

4
0
2
M

5
1
,1
6
1
.3
0

7
8
7
M

4
2
,0
1
6
.5
7

6
0
2
M

2
,8
5
5
.1
4

4
7
4
M

2
9
,9
7
2
.3
0

8
6
0
M

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 11

GPU-based computation mirrors CPU-based one in all respects except for how it dis-
tributes the work across multiple threads. Code fragments below illustrate the differences
in the implementation of the main sweep over all points on the grid between the two program-
ming frameworks. To focus on the key details, we selected these fragments from a codebase
for the evaluation of the cost-to-go function of the cautionary myopic policy. The code for
the optimal policy is conceptually similar but is obscured by the details of implementing
the minimization operator. We also omit parts of the code that are not interesting, such as
checking iteration progress, reading input or generating output files. Omitted segments are
marked by points of ellipsis.

Fortran 90 code

1 ...
2 ! set multithreaded OpenMP version using all available CPUs
3 #ifdef _OPENMP
4 call OMP_SET_NUM_THREADS(numthreads)
5 #endif
6 allocate(V(NX,Nmu,NS,2),U(NX,Nmu,NS))
7 ...
8 supval = abs(10.0d0*PolTol+1.0)
9 polit1=0

10 ip = 1
11 ppass =0
12 do while((ip<MaxPolIter+1).and.(ppass.eq.0))
13 ! loop over the grid of the three state variables
14 !$omp parallel default(none) &
15 !$omp shared(NX,Nmu,NS,U,V,X,mu,Sigma,alpha,gamma,delta,omega,ubar,xbar,sigma_eps) &
16 !$omp private(i,j,k)
17 !$omp do
18 do i=1,NX
19 do j=1,Nmu
20 do k=1,NS
21 V(i,j,k,2) = F(U(i,j,k),i,j,k,V)
22 enddo
23 enddo
24 enddo
25 !$omp end do
26 !$omp end parallel
27

28 ! check convergence criterion for the policy function iteration
29 supval = maxval(abs(V(:,:,:,1)-V(:,:,:,2)))
30 checkp = maxval(delta*abs(V(:,:,:,1)-V(:,:,:,2))/((1-delta)*(abs(V(:,:,:,1)))))
31 if (checkp<PolTol) then
32 ppass = 1
33 endif
34

35 ! update the value function
36 V(:,:,:,1) = V(:,:,:,2)
37

38 print *, ’ FINISHED POLICY ITERATION’,ip
39 if (ppass.eq.1) then
40 print *, ’POLICY ITERATION CONVERGED’
41 else
42 print *, ’POLICY ITERATIONS - NO CONVERGENCE’
43 endif
44 ip=ip+1
45 enddo
46 polit1=ip-1
47 ...

The Fortran code is fairly straightforward. The main loop starts on line 14 and encloses
pointwise value updates. So called OpenMP sentinels on lines 14-17 and 25-26 tell compiler
to generate multiple threads that will execute the loop in parallel. Division of the workload
is up to the compiler to decide.

CUDA code (main)

1 ...
2 cudaMalloc((void**) &dX,NX*sizeof(double));
3 ...
4 cudaMemcpy(dX,X,NX*sizeof(double),cudaMemcpyHostToDevice);
5 ...
6 numBlocks=512;
7 numThreadsPerBlock=64;
8 dim3 dimGrid(numBlocks);
9 dim3 dimBlock(numThreadsPerBlock);

12 SERGEI MOROZOV AND SUDHANSHU MATHUR

10

11 // start value iteration cycles
12 supval=fabs(10.0*PolTol+1.0);
13 polit1=0;
14 ip=1;
15 ppass=0;
16 while ((ip<MaxPolIter+1)&&(ppass==0))
17 {
18 // update expected cost-to-go function on the whole grid (in parallel)
19 UpdateExpectedCTG_kernel<<<dimGrid,dimBlock>>>(dU,dX,dmu,dSigma,dV0,drno,dwei,dV1);
20 cudaThreadSynchronize();
21

22 // move the data from device to host to do convergence checks
23 cudaMemcpy(V1,dV1,NX*Nmu*NS*sizeof(double),cudaMemcpyDeviceToHost);
24

25 // check convergence criteria for the policy function iteration if ip>=2
26 ...
27 // update value function, directly on the device
28 cudaMemcpy(dV0,dV1,NX*Nmu*NS*sizeof(double),cudaMemcpyDeviceToDevice);
29 // update value function on host as well
30 cudaMemcpy(V0,V1,NX*Nmu*NS*sizeof(double),cudaMemcpyHostToHost);
31 ...
32 }
33 ...
34 cudaFree(dX);
35 ...

Prior to yet to be released CUDA 4.0, the CUDA code requires separate memory spaces
allocated on the host CPU and on the graphics device, with explicit transfers between the
two. It replaces the entire loop with a call to a kernel function (line 19). The kernel
function is executed by each thread applying a device function to its own chunk of data.
The number of threads and their organization into blocks of threads is an important tuning
parameter. Having more threads in a block hides memory latencies better but it will also
reduce resources available to each thread. For a rough guidance on the tradeoff between size
and number of blocks we used NVIDIA’s CUDA occupancy calculator, a handy spreadsheet
tool. Even though NVIDIA recommends the number of threads per block that is a multiple
of available streaming multiprocessors (30 for GTX280), we were restricted to the powers
of two by our implementation of divide-and-conquer algorithm for on-device reduction (see
section 4.4). Additionally, all the model parameters as well as fixed quantities such as grid
sizes or convergence tolerances were placed in constant memory to facilitate local access to
these values by each thread. No further optimizations were initially applied. The final code
snippet shows some internals of the kernel code but omits the device function. Internals
of the device function are functionally identical to similar Fortran code and perform the
Gauss-Hermite integration of the trilinearly interpolated value function.

CUDA kernel code

1 ...
2 __device__ inline double UpdateExpectedCTG(double u,double x,double mu,double Sigma,
3 double alpha, double gamma, double delta, double omega, double sigma_eps,
4 double xbar, double ubar, int NX,int Nmu, int NS, int NGH, double* XGrid,
5 double* muGrid, double* SigmaGrid, double* V, double* rno, double* wei);
6 __global__ void UpdateExpectedCTG_kernel(double* U,double* X,double* mu,
7 double* Sigma,double* V0,double* rno,double* wei,double* V1)
8 {
9

10 //Thread index
11 const int tid = blockDim.x * blockIdx.x + threadIdx.x;
12 const int NUM_ITERATION= dc_NX*dc_Nmu*dc_NSigma;
13 int ix,jmu,kSigma;
14

15 //Total number of threads in execution grid
16 const int THREAD_N = blockDim.x * gridDim.x;
17

18 //ech thread works on as many points as needed to update the whole array
19 for (int i=tid;i<NUM_ITERATION;i+=THREAD_N)
20 {
21 //update expected cost-to-go point-by-point
22 ix=i/(dc_NSigma*dc_Nmu);
23 jmu=(i-ix*dc_Nmu*dc_NSigma)/dc_NSigma;
24 kSigma=i-ix*dc_Nmu*dc_NSigma-jmu*dc_NSigma;

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 13

25 V1[i]=UpdateExpectedCTG(U[i],X[ix],mu[jmu],Sigma[kSigma],dc_alpha,
26 dc_gamma,dc_delta,dc_omega,dc_sigmasq_epsilon,dc_xstar,dc_ustar,
27 dc_NX,dc_Nmu,dc_NSigma,dc_NGH,X,mu,Sigma,V0,rno,wei);
28 }
29

30 }
31 ...

4.3. Speed comparison. Table 2 documents initial timing results for GPU implementa-
tions in single and double precision in comparison to single-threaded and multi-threaded
CPU-based implementations. These are done for all three policies and across a range of grid
sizes. As with CPU-based implementation, CUDA codes were timed repeatedly to reduce
measurement noise.14

Several things are worth noticing in table 2. First, for the small problem sizes, multi-
threading is actually detrimental to performance due to the fixed costs of thread management
and memory allocation. CPU threads are more ”heavy-weight”, requiring larger thread
creation/destruction overheads, with four CPU cores finishing slower than one core in several
cases. Second, across all cases, GPU wins over single CPU in 86% of cases, and over four
cores in 94% of cases, only loosing for the smallest grid sizes. Third, the margin of victory is
oftentimes quite substantial, in some cases more than factor of 20. Fourth, single precision
calculation on the GPU is generally faster than double precision, especially taking into
consideration that the dynamic programming algorithm takes up to 50% more iterations to
converge in single precision, with the exact ratio depending on grid size and policy type. In
contrast, the speed of single precision calculation on the CPU is only marginally different
from double precision, after accounting for the convergence effect. This is because GPUs
have separate units dedicated to double and single precision floating point calculations but
CPUs do not. Moreover, consumer versions of NVIDIA GPUs have only a fraction of
resources devoted to double precision compared to single precision.15 With this in mind, it
is actually surprising how little difference there is between the double and single precision
results on GPU. This is likely due to the underutilization of the floating point resources in
either case.

To provide a uniform basis for the comparison we transformed the timing results for the
double precision case reported in table 2 into gridpoints per second speeds. The speeds are
plotted in figure 1 against the overall size of the grid, in semi-log space. For all three policy
types, performance of the single-threaded code tends to fade with the problem size, most
likely due to memory limitations. In contrast, the performance of the two- and four-threaded
versions of the two suboptimal policies initially improves with the problem size as fixed costs
of multiple threads are spread over a longer runtime but starts to fall relatively early. The
more complex calculation per grid point for the optimal policy causes a downward trend in
the performance throughout the entire grid size range. The GPU performance, on the other
hand, continues to improve until a moderately large grid size but still drops for the very
large grids.

Figure 2 distills performance numbers further by focusing on the GPU speedup ratio
relative to the single CPU. It emphasizes two things – somewhat limited applicability of
the GPU speedups and a substantial speed boost for moderately sized grids even for double
precision.16 Beyond the optimal problem size, the gain in speed tapers off.17

14The GPU runs have remarkably lower variability of measured runtime compared to the CPU-based
runs, possibly due to less intervention from the operating system.

15Only the recent models in NVIDIA’s Tesla line of GPUs that is targeted for high-performance comput-

ing instead of gaming improve substantially on the ratio of double precision and single precision capabilities.
16Similar but slightly slower results were reported in an earlier working paper version using CUDA 2.2,

except for largest grids where computational acceleration faltered precipitously.
17Additionally, if the same GPU is used simultaneously to drive a graphic display, GPU threads are

currently limited to no more than 5 seconds of runtime each. Since lifetime of a thread in our implementation
is one iteration of the dynamic programming algorithm, and it takes 90-100 iterations to convergence, the

total runtime is limited to about 500 seconds. To overcome this limitation one either has to use dedicated

14 SERGEI MOROZOV AND SUDHANSHU MATHUR

T
a
b
l
e

2
.

R
u

n
tim

e
co

m
p

a
riso

n
o
f

C
P

U
a
n

d
b

a
selin

e
G

P
U

-b
a
sed

calcu
lation

s.

P
o
lic

y
G

r
id

s
iz
e

G
r
id

P
o
in

t
s

S
in

g
le

P
r
e
c
is
io

n
D
o
u
b
le

P
r
e
c
is
io

n

C
P
U

1
C
P
U

4
G
P
U

C
P
U
1

G
P
U

C
P
U
4

G
P
U

C
P
U

1
C
P
U

4
G
P
U

C
P
U
1

G
P
U

C
P
U
4

G
P
U

In
e
rt

U
n
in
fo
r-

m
a
tiv

e
P
o
lic

y

8
x
8
x
8

5
1
2

0
.1
1
4

0
.7
2
3

0
.2
3
1

0
.4
9

3
.1
3

0
.0
9
6

0
.2
7

0
.2
1
6

0
.4
6

1
.2
5

1
6
x
1
6
x
1
6

4
,0
9
6

0
.7
3
5

0
.6
8
9

0
.2
6
1

2
.8
2

2
.6
4

0
.9
5

0
.3
3

0
.2
8
8

3
.3
0

1
.1
5

3
2
x
3
2
x
3
2

3
2
,7
6
8

7
.0
3
9

2
.6
6
9

1
.0
2
7

6
.8
5

2
.6
0

8
.4
2

2
.7
1

1
.0
7
0

7
.8
7

2
.5
3

6
4
x
6
4
x
6
4

2
6
2
,1
4
4

7
4
.2
5
0

2
5
.3
1
9

5
.5
2
9

1
3
.4
3

4
.5
8

7
7
.1
7

2
1
.7
3

6
.1
5
6

1
2
.5
4

3
.5
3

1
2
8
x
1
2
8
x
1
2
8

2
,0
9
7
,1
5
2

7
4
8
.1
1
9

2
2
3
.6
9
6

4
2
.2
8
2

1
7
.6
9

5
.2
9

7
9
8
.4
5

2
1
1
.1
8

4
9
.6
3
0

1
6
.0
9

4
.2
6

2
5
6
x
2
5
6
x
2
5
6

1
6
,7
7
7
,2
1
6

6
,4
0
0
.1
2
3

1
,9
5
0
.3
1
5

3
6
9
.2
2
5

1
7
.3
3

5
.2
8

7
,3
6
8
.5
6

2
,0
1
6
.5
7

4
1
3
.5
3
2

1
7
.8
2

4
.8
8

C
a
u
tio

n
a
ry

M
y
o
p
ic

P
o
lic

y

8
x
8
x
8

5
1
2

0
.0
9

0
.5
2
1

0
.2
1
1

0
.4
3

2
.4
7

0
.0
9
4

0
.2
2

0
.2
7
0

0
.3
5

0
.8
1

1
6
x
1
6
x
1
6

4
,0
9
6

1
.1
0
0

0
.8
0
6

0
.2
7
3

4
.0
3

2
.9
5

1
.0
1

0
.3
5

0
.2
8
9

3
.4
8

1
.2
1

3
2
x
3
2
x
3
2

3
2
,7
6
8

1
1
.3
9
7

4
.0
5
6

1
.1
5
0

9
.9
1

3
.5
3

9
.7
2

3
.0
1

1
.5
8
8

6
.1
3

1
.9
0

6
4
x
6
4
x
6
4

2
6
2
,1
4
4

1
2
4
.6
6
3

4
0
.9
4
1

7
.0
0
9

1
7
.7
9

5
.8
4

9
4
.0
7

2
6
.1
4

6
.9
3
5

1
3
.5
6

3
.7
7

1
2
8
x
1
2
8
x
1
2
8

2
,0
9
7
,1
5
2

1
,2
1
8
.9
6
4

3
8
3
.0
8
8

5
9
.9
3
9

2
1
.5
0

6
.3
9

9
6
2
.4
6

2
7
0
.3
7

6
4
.6
9
3

1
4
.8
8

4
.1
8

2
5
6
x
2
5
6
x
2
5
6

1
6
,7
7
7
,2
1
6

1
3
,7
3
9
.5
9
9

4
,1
6
1
.6
6

9
9
4
.2
8

1
3
.8
2

4
.1
9

9
,8
8
0
.0
6

2
,8
5
5
.1
4

7
4
8
.6
3
0

1
3
.2
0

3
.8
1

O
p
tim

a
l

P
o
lic

y

8
x
8
x
8

5
1
2

1
.6
3
9

0
.6
3
3

1
.1
4
8

1
.4
3

0
.5
5

1
.4
3

0
.5
7

1
.2
3
5

1
.1
6

0
.4
6

1
6
x
1
6
x
1
6

4
,0
9
6

1
6
.1
0
5

5
.2
8
7

1
.5
2
8

1
0
.5
4

3
.4
6

1
3
.2
2

4
.7
9

3
.4
9
3

3
.7
8

1
.3
7

3
2
x
3
2
x
3
2

3
2
,7
6
8

1
5
3
.8
1
6

4
8
.7
5
4

8
.1
3
0

1
8
.9
2

6
.0
0

1
2
2
.6
8

3
7
.5
6

1
3
.1
6
3

9
.3
2

2
.8
5

6
4
x
6
4
x
6
4

2
6
2
,1
4
4

1
,4
1
3
.7
9
4

4
2
2
.3
1
6

6
4
.5
7
6

2
1
.8
9

6
.5
4

1
,0
8
5
.4
7

3
4
4
.4
3

8
4
.7
5
6

1
2
.8
1

4
.0
6

1
2
8
x
1
2
8
x
1
2
8

2
,0
9
7
,1
5
2

1
6
,7
8
3
.0
3
0

5
,2
0
0
.6
4
6

7
5
5
.6
7
5

2
2
.2
1

6
.8
8

9
,9
7
2
.3
9

3
,1
3
1
.7
2
4

6
5
0
.6
9
5

1
5
.3
3

4
.8
1

2
5
6
x
2
5
6
x
2
5
6

1
6
,7
7
7
,2
1
6

2
0
2
,2
0
9
.0
7
5

6
1
,8
1
0
.3
3
8

1
6
,0
5
4
.9
9
0

1
2
.5
9

3
.8
5

9
8
,2
5
3
.3
2

2
9
,9
7
2
.3
0

6
,9
6
6
.7
8
6

1
4
.1
0

4
.3
0

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 15

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

2

4

6
x 10

4

Grid points

G
ri
d
 p

o
in

ts
 p

e
r

s
e
c
o
n
d

Inert Uniformative Policy

1 CPU

2 CPU

4 CPU

GPU

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

1

2

3

4
x 10

4

Grid points

G
ri
d
 p

o
in

ts
 p

e
r

s
e
c
o
n
d

Cautionary Myopic Policy

1 CPU

2 CPU

4 CPU

GPU

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

1000

2000

3000

4000

Grid points

G
ri
d
 p

o
in

ts
 p

e
r

s
e
c
o
n
d

Optimal Policy

1 CPU

2 CPU

4 CPU

GPU

Figure 1. Speed comparison of CPU and GPU-based approaches for dou-
ble precision calculations.

Figure 2. Ratio of GPU and single CPU speeds for double precision cal-
culations.

4.4. Code Tuning. The substantial speed gains demonstrated above are a testament to
the potential of throughput-oriented GPU architecture and resulted from a straightforward

graphics and computation boards, run the program without windowing system present, or modify the code

to make each thread do less work.

16 SERGEI MOROZOV AND SUDHANSHU MATHUR

code translation. Whether our initial implementation leaves additional performance on the
table is the focus of this section.

To identify potential performance bottlenecks of the initial implementation we made use
of the CUDA profiler tool. Results for the 64x64x64 problem configuration are reported in
table 3.18

Table 3. CUDA Profiler report based on runs with 64x64x64 grid size.

Policy Computation GPU Time
Average
Occupancy

Divergent
Branches

Registers
per Thread

Inert
Policy

GPU→CPU
memory copy

0.148

Kernel
Execution

5.400 18:8% 0.75% 71

GPU→GPU
memory copy

0.000

CPU→GPU
memory copy

0.074

Cautionary
Myopic
Policy

GPU→CPU
memory copy

0.148

Kernel
Execution

5.950 18.8% 5.21% 71

GPU→GPU
memory copy

0.000

CPU→GPU
memory copy

0.074

Optimal
Policy

GPU→CPU
memory copy

0.050

Kernel
Execution

84.260 12.5% 3.83% 122

GPU→GPU
memory copy

0.007

CPU→GPU
memory copy

0.001

Ostensibly, the execution time is dominated by the kernel computations while explicit
transfers between various memory spaces account for less than 3% of the time. This is
helpful since memory accesses are normally much slower than computations. Also favorable
to the performance is a low incidence of divergent branches. Divergent branches refer to the
situations when different threads within the same group of threads called warp take different
paths following a branch condition. Thread divergence leads to performance degradation.

On the other hand, average occupancy seems low. Average occupancy indicates that
only 10-20% of threads (out of possible 30,720) can be launched simultaneously with enough
per-thread resources. While high occupancy does not necessarily equal performance, low
occupancy kernels are not as adept at hiding latency. NVIDIA recommends average latency
of 25% or higher to hide the memory latency completely (NVIDIA, 2009c). The limiting
factor to occupancy is the number of registers, the fastest type of on-chip memory used
to store intermediate calculations. More registers per thread will generally increase the
performance of individual GPU threads. However, because thread registers are allocated
from a global register pool, the more registers are allocated per thread will also reduce the

18Slight discrepancy in runtimes between tables 2 and 3 is due to a small variation between the individual

runs and the overheads of initialization and profiling counters.

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 17

maximum thread block size, thereby reducing the amount of thread parallelism (NVIDIA,
2009c). NVIDIA CUDA compiler provides a switch that allows control of the maximal
number of registers per thread. If this option is not specified, no maximum is assumed. In
addition, for a given register limit, occupancy may be tuned by manipulating the execution
configuration, i.e., the number of thread blocks and the block size. For simplicity, we fixed
execution configuration parameters at values suggested by the CUDA occupancy calculator.

To assess the impact of specifying different maximal amount of registers per thread, we
recompiled and rerun the code for the actively optimal control using register values from 20
to 128. 20 is the smallest amount that allows the program to run, and 128 is the maximum
allowed by the GT200 architecture. The results of that experiment, in terms of grid points
per second, are shown in figure 3 for several problem sizes. The best results for each problem
size are marked with solid circles and also collected in table 4.19

0 20 40 60 80 100 120
10

2

10
3

10
4

Register Limit

G
rid

po
in

ts
 p

er
 s

ec
on

d

8x8x8
16x16x16
32x32x32
64x64x64
128x128x128
256x256x256

Figure 3. Register use and GPU speeds for active optimal policy calculation.

The good news in figure 3 and table 4 is an ability to extract additional 40% of perfor-
mance. The bad news is that tuning register use is not automatic but labor intensive. It
also appears to be problem size specific. For the smallest problems it is best to use almost
all registers, while for medium-size problems it is enough to restrict register usage to 32 – 48
range. The largest problems again favor large number of registers. As scarcity of registers
limits the amount of thread parallelism, this explains hump-shaped performance curve in
figure 2. Since occupancy is in an inverse relationship with register use, the optimal occu-
pancy exhibits inverse U shape with respect to the problem size. That occupancy is not
equal performance is upheld in figure 4. Occupancy declines throughout the entire range
of register use limits, and yet the optimal register use is achieved in the interior. Still, the
greatest performance boost is achieved for problem sizes with the largest difference between
the baseline and the optimized occupancy values.

Comparison of figures 3 and 4 suggests a very strong correlation of performance and
memory throughput reported by CUDA profiler. It makes sense based on the following
considerations.

Each thread in our implementation sequentially applies Bellman updates to one or more
point on the state-space grid (more than one if the total grid size exceeds the number of

19Similar results were obtained for the other two policies and thus not reported.

18 SERGEI MOROZOV AND SUDHANSHU MATHUR

Table 4. Speedup due to register tuning for active optimal policy calculation.

Problem size

Default
solu-
tion
time

Optimal
register
restriction

Register-
optimal
solution time

Speedup
factor

Optimal
occu-
pancy

8x8x8 1.253 124 1.241 0.95% 12.5%

16x16x16 3.493 92 3.291 6.14% 12.5%

32x32x32 13.163 32 9.273 41.95% 50%

64x64x64 84.756 40 58.961 43.75% 37.5%

128x128x128 650.695 48 578.393 12.50% 31.25%

256x256x256 6,966.786 120 6,966.982 0.00% 12.5%

0 20 40 60 80 100 120
0

0.2

0.4

0.6

O
cc

up
an

cy

Register Limit

0 20 40 60 80 100 120
15

20

25

30

M
em

or
y

T
hr

ou
gh

pu
t (

G
B

ps
)

Occupancy
Memory Throughput

Figure 4. Occupancy and memory throughput against register use for
active optimal policy calculation for 64x64x64 problem size.

available threads). For each update, the Gauss-Hermite quadrature requires access to as
many off-the-grid points as there are quadrature knots (we use 32). Trilinear interpolation
needs 8 on-the-grid points for each quadrature knot. Thus, updating a single grid point
requires access to 256 values of the cost-to-go function which is stored in global on-GPU

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 19

memory.20;21 For each such value, the kernel performs four floating point operations, result-
ing in compute to global memory access ratio (CGMA) of about 4. Low CGMA ratio means
that memory access is indeed the limiting factor (Kirk and Hwu, 2010).

Since the reported memory throughput falls short of the advertised theoretical maximum
of 141.6 GB/sec, there are additional factors hindering performance. These factors have to
do with locality of memory accesses. Indeed, the 256 values of the cost-to-go function needed
to update a given point could be widely spread out in the state space since they depend
on the magnitude of control impulse under consideration. Therefore, the Gauss-Hermite
integration inside the value function update induces a memory access pattern that is not
random but somewhat irregular in that large and variable control impulse effectively spreads
out integration nodes further apart so that access to more distant grid indices is required.22

Since the memory access is irregular, a popular strategy of storing subvolumes of the state
space in constant memory will not work (Kirk and Hwu, 2010). Improving memory access
requires more sophisticated approaches. One such approach is to do with textures.

Due to their graphics heritage, GPUs have dedicated hardware to process and store
textures which can be thought of as two-dimensional “skin” to be mapped onto a surface of
a three-dimensional object. Formally, a texture can be any region in linear memory which is
read-only and cached, potentially exhibiting higher bandwidth if there is 3D locality in how
it is accessed. Textures are read from kernels using device functions called texture fetches.23

Due to the special memory layout of texture fetches, the codes with random or irregular
memory access patterns typically benefit from binding multi-dimensional arrays to textures
instead of storing them in the global on-device memory. Thus, texture fetches can provide
higher memory bandwidth to computational kernels.24 With this in mind, we bound our
policy and value arrays to one-dimensional textures and used texture fetches inside CUDA
kernel. Results are shown in figure 5 for baseline case with unlimited per-thread registers
in the left panel and for register-tuned case in the right panel.

The inert uninformative policy features a regular access pattern to the one-dimensional
arrays storing value and policy function approximations. Thus, it does not benefit much
from texture memory access. Under cautionary myopic policy, using textures can be highly
beneficial, especially for larger problem sizes. Calculations for the optimal policy are also
consistently accelerated by texture fetches for larger problems, but for smaller problems it
could lead to a performance loss.

An important performance recommendation, according to NVIDIA (2009c), is to mini-
mize data transfers between the host and the device because those transfers have much lower
bandwidth than internal device data transfers. In our initial implementation, convergence
check was done on the CPU which necessitated transfer of data out of the GPU device.
A convergence check amounts to calculating the maximum difference between two arrays,
and is thus a reduction (Kirk and Hwu, 2010). Reduction step could be performed on the
GPU. We extended our computational kernel to accommodate on-device partial reduction
in which each thread block computes the maximal absolute difference for the array indices
assigned to it. This is done by traversing a comparison tree in a way that aligns memory

20Technically, our algorithm features gather memory access type.
21Potentially, not all of these grid points are distinct, in which case there is a loss of efficiency due to

repeated yet unnecessary memory access. Adapting the code to track repetitions requires each thread to

locally store potentially large number of values thus increasing register pressure and complicating code flow.
For these two reasons we decided against access tracking.

22The do-nothing policy is an exception since it leaves beliefs and integration nodes unchanged.
23Texture fetches are not available in CUDA Fortran.
24 In addition, texture fetches are further capable of hardware-accelerated fast low-precision trilinear

interpolation with automatic handling of boundary cases. This could be very useful since the value and
policy functions are approximated by the trilinear interpolation in between the grid points. The problem, as

of current implementation of CUDA and GPU hardware, is the lack of support for double precision texture
fetches. Accessing double precision memory can be overcome by using union of double and integer, but
the double precision interpolation remains impossible. Also, it has been observed that the effectiveness of

textures is highly dependent on CUDA hardware and driver, with some “magic” access patterns much faster
than others (Barros, 2009; Barros, Babich, Brower, Clark, and Rebbi, 2008).

20 SERGEI MOROZOV AND SUDHANSHU MATHUR

10
2

10
4

10
6

10
8

−10

0

10

20

30

40

50

Grid Points

S
pe

ed
 G

ai
n

(%
)

Baseline

Inert Uniformative Policy
Cautionary Myopic Policy
Optimal Policy

10
2

10
4

10
6

10
8

−10

0

10

20

30

40

50

Grid Points
S

pe
ed

 G
ai

n
(%

)

With Optimal Register Limit

Inert Uniformative Policy
Cautionary Myopic Policy
Optimal Policy

Figure 5. Speed gains due to accessing memory via textures.

accesses by each thread, unrolls loops and uses shared memory. This partial reduction code
was derived from Harris (2005). It has high-performance on large arrays but is rather com-
plex and repetitive, especially for the optimal policy calculations which are hampered by
CUDA’s restriction on function pointers preventing us from splitting the optimization code
into a separate function. Once the first thread in a thread block finds the max norm dis-
tance between successive value function approximations for the slice assigned to that thread
block, the second round of reduction commences where a small subset of threads is used
to compute the largest of thread block maxima. This step is short since there could be no
more than 512 thread blocks. For simplicity, we have not taken up a suggestion by Boyer,
Tarjan, Acton, and Skadron (2009) to reorder reduction and computation steps to eliminate
wasteful synchronization barrier between first and second rounds.

Figure 6 summarizes the performance impact due to on-device reduction in combination
with other methods. On-device reduction is not always beneficial, especially for small prob-
lem sizes as well as for more complex algorithms. For example, optimal policy computation
is accelerated only in combination with other techniques and for the largest problem sizes,
since it is largely compute-bound, not communication-bound. On the other hand, comput-
ing the value of the cautionary myopic policy profits from on-device reduction practically
across the board. In combination with register tuning, it can gain impressive 68%. The
speed gain tends to diminish when on-device reduction is in addition to texture fetches
since both techniques aim to alleviate the same memory bottleneck.

CUDA offers several additional techniques and tools that may help performance in some
applications. These include page-locked memory (pinned memory) mapped for access by
GPU for higher transfer speeds and eligibility for asynchronous memory transfers as well
as atomic functions that are guaranteed to be performed without interference from other
threads. We investigated these techniques and found neither speed advantage nor disadvan-
tage for our code.

4.5. Discussion. Table 5 assembles our best speedups relative to a single CPU for double
precision code and how to achieve them. It shows that we are able to extract up to 26 fold
more speed from a graphics device than from a single thread running on a high end CPU. It
also highlights that achieving maximal performance is not straightforward but comes from

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 21

10
2

10
4

10
6

10
8

−50

0

50

100

Grid Points

S
pe

ed
 G

ai
n

(%
)

Baseline

Inert Uniformative Policy
Cautionary Myopic Policy
Optimal Policy

10
2

10
4

10
6

10
8

−50

0

50

100

Grid Points

S
pe

ed
 G

ai
n

(%
)

With Optimal Register Limit

Inert Uniformative Policy
Cautionary Myopic Policy
Optimal Policy

10
2

10
4

10
6

10
8

−50

0

50

100

Grid Points

S
pe

ed
 G

ai
n

(%
)

With Texture Fetches

Inert Uniformative Policy
Cautionary Myopic Policy
Optimal Policy

10
2

10
4

10
6

10
8

−50

0

50

100

Grid Points
S

pe
ed

 G
ai

n
(%

)

With Optimal Register Limit and Texture Fetches

Inert Uniformative Policy
Cautionary Myopic Policy
Optimal Policy

Figure 6. Speed gains due to on-device partial reduction.

a search over multiple performance dimensions. It is doubtful that researchers will have
enough time on their hands to do much beyond simple tune-ups.

For the smallest problem sizes, GPU computing is not worth the effort and can be even
counterproductive.

Our best case speedups seem to fall behind the speedups up to 500 fold reported in
Aldrich, Fernández-Villaverde, Gallant, and Rubio-Ramı́rez (2011), the first application of
the GPU computing technology to solving dynamic equilibrium problems in economics.
There are several reasons for the discrepancy. First and foremost, the largest speedup in
Aldrich, Fernández-Villaverde, Gallant, and Rubio-Ramı́rez (2011) is achieved when the
GPU and the CPU run different algorithms that implement a binary search. The CPU ver-
sion exploited the monotonicity of the value function to place state-dependent constraints on
the control variable, while the GPU version ignored those constraints as they created depen-
dencies that were not parallelizable. To the extent that both approaches yielded accurate so-
lutions, handicapping the CPU version was not necessary. In contrast, our comparison used
exactly the same algorithm in both versions. More generally, we concur with with a defensive
argument made by Intel software engineers (Lee, Kim, Chhugani, Deisher, Kim, Nguyen,
Satish, Smelyanskiy, Chennupaty, Hammarlund, Singhal, and Dubey, 2010) that stunningly
large (in excess of 100 fold) speedups are more likely reflective of an inferior CPU algo-
rithm than of a superior GPU implementation. For a fair comparison, both CPU and GPU
implementations need to be fine-tuned, a potentially difficult task in both cases. Second,
memory requirements of the dynamic program in Aldrich, Fernández-Villaverde, Gallant,
and Rubio-Ramı́rez (2011) are very light, since the state-space grid is one-dimensional.25

25We disagree with Aldrich, Fernández-Villaverde, Gallant, and Rubio-Ramı́rez’s (2011) argument that

memory capacity limitations are unlikely to be a serious concerns for most problems that economists may
encounter. Clearly, memory capacity is still a concern in the exploration of previously intractable high-

dimensional state spaces, such as those arising in active learning problems. More important than size is how
quickly those high-dimensional objects can be accessed. If computational elements are massively parallel
and fast, a lot of care has to be taken to ensure that the overall memory hierarchy is organized efficiently

- that the data needed immediately is stored as close to computation as possible. Moving data in parallel
with computation between memory locations with different access proximity will be of serious concern for

high-dimensional dynamic equilibrium problems that economists may attempt to solve.

22 SERGEI MOROZOV AND SUDHANSHU MATHUR

Table 5. Maximal speedups.

Policy Grid size Maximal Speedup Register Limit Textures On-device Reduction

Inert Uninformative Policy

8x8x8 0.58 116 yes yes

16x16x16 3.96 unlimited no yes

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 23

significantly to further GPU advantage. By the time of publication, new graphics cards
and CUDA driver updates more than quadrupled the performance of our code, a faster
ramp compared with the increase in CPU core count and frequency over the same period.27

We expect that with the subsequent NVIDIA GPU generations, code-named ”Kepler” and
”Maxwell”, the performance ramp will be extended further.

Nevertheless, attaining the full potential of the graphics hardware proved more involved
as we needed to know certain details of how the underlying architecture actually works.
Notably, one has to heed the management of the thread hierarchy by balancing size and
number of blocks, by hiding memory latency through overlapping inter-GPU communica-
tion with computation, by explicitly optimizing memory access patterns across different
memory types and different memory locations. Appropriate combinations of performance
tuning techniques, which essentially trade one resource constraint for another, can make a
huge difference in the final performance. Plausible strategies to optimize around various
performance gating factors embrace ideas of maximizing independent parallelism; work-
load partitioning and tiling; loop unrolling; using shared, constant and texture memories;
data prefetch; asynchronous data transfers and optimizing thread granularity (see NVIDIA
(2009c)). Since in different applications, different resource limits may be binding, perfor-
mance tuning is prone to dull guess work.28

The tedium of debugging parallel code can detract from GPU programming. Parallel
code begets new breed of errors including resource contention, race conditions and dead-
locks. Since even very unlikely event will likely occur given sufficiently many trials, the
severity of these errors rapidly escalates with the number of parallel threads. For example,
triggering a subtle synchronization bug may be extremely unlikely with a small number of
concurrent threads, but the same bug will have a much higher probability of manifestation
in a parallel program with tens of thousands of threads. Even so, uncovering and solving
a bug in a parallel program will not necessarily get easier with higher likelihood of bug’s
appearance. This is because effective reasoning about parallel workflow is difficult even for
seasoned programmers. Fortunately, with each new iteration of CUDA development tools,
it gets easier to visualize parallel workflow and debug code. Reusing tested code further
reduces novice errors and performance barriers. NVIDIA supports code reuse by providing
templated algorithms and data structures in Thrust and NPP libraries as well as by extending
the set of implemented C++ features.29

GPU-based numerical libraries are in their infancy as well. While basic linear algebra,
some signal processing (e.g., FFT) and elementary random number generation are covered
(NVIDIA, 2009a; Tomov, Dongarra, Volkov, and Demmel, 2009; NVIDIA, 2010, 2009b;
Howes and Thomas, 2007), important areas such as multivariate optimization and quadra-
ture are not. Integration with different programming languages such as Fortran or Java or
with computing environments such as Matlab or Mathematica is also incomplete.

Development of parallel computing on GPUs is bound to have an impact on high per-
formance computing industry as graphics cards are already inexpensive and ubiquitous.
Indeed, with peak performance of nearly one teraflop, the compute power of today’s graph-
ics processors dwarfs that of the commodity CPUs while costing only a few hundred dollars.
If nothing else, emergence of GPU as a viable competitor to traditional CPU for high per-
formance computing will elicit a response by the major CPU manufacturers, a duopoly of
Intel and AMD. Even though CPU development may appear glacial compared to quantum
performance leaps in GPUs, nothing prevents CPUs from adopting ideas of data parallel
processing. CPUs are growing to have more cores, capable of more threads, add special

27Initial experiments with GTX580 graphics card reduced the longest runtimes for the optimal policy
calculation by a factor of 6 compared with GTX280.

28Kirk and Hwu (2010) report in one their case studies that exhaustive search over various tuning param-
eters and code organizations resulted in 20% larger performance increase than was available by exploiting

heuristic considerations.
29For example, version 4 of CUDA toolkit includes support for virtual functions and dynamic memory

management with new and delete operators.

24 SERGEI MOROZOV AND SUDHANSHU MATHUR

units for streaming and vector computations. Already, many-core CPU and GPU hybrids
are in development.30

GPU architecture and capabilities are still undergoing rapid development. For instance,
NVIDIA GPUs of compute capability 2.0, released in early 2010, mitigated the performance
disadvantage of double precision floating point arithmetics, enabled larger 64-bit memory
address space which is unified across host CPU and GPU devices, allowed concurrent execu-
tion of heterogeneous kernels, lifted a number of C/C++ language restrictions and provided
better tools for debugging and performance analysis (Kirk and Hwu, 2010). In a way, GPUs
continue to become more general purpose, while CPUs acquire special purpose GPU-like
components. CUDA toolkit 4.0 has similarly supported this trend by introducing unified
virtual addressing and peer-to-peer memory access for faster multi-GPU programming.

The relative balance between using moderate number of general purpose CPU-like com-
ponents and large number of special purpose GPU-like components in future designs is not
clear, and will likely vary over time and among different device makers. Either way, there
seems to be no doubt that future generations of computer systems, ranging from laptops to
supercomputers, will consist of a composition of heterogeneous components. Furthermore,
it does not matter whether GPUs will merge into CPUs or vice versa. What does matter
is how to harness the raw power of heterogenous task-parallel and data-parallel devices for
general purpose computations. Development of programming tools is essential here and the
effort is already well under way. Thus, our initial assessment of writing fast parallel code as
a black magic, mastered only by those stubborn enough to persevere through a long journey
of frustration, is no longer true.

The future of many computations belongs to parallel algorithms. Today’s era of tra-
ditional von Neumann sequential programming model (Backus, 1977) with its escalating
disparity between the high rate at which CPU can work and limited data throughput be-
tween it and memory is nearly over. Modern processors are becoming wider but not faster.
The change in computational landscape presents both challenges and opportunities for the
economists and financial engineers. In this regard, our paper is but a modest attempt to
pick up low hanging fruit. Further case studies to cultivate intuition about the types of
algorithms that can result in high performance execution on massively parallel co-processor
devices as well as economic applications that can benefit from that performance are needed.

References

Abdelkhalek, A., A. Bilas, and A. Michaelides (2001): “Parallelization, optimiza-
tion and performance analysis of portfolio choice models,” in Proceedings of the 2001
International Conference on Parallel Processing (ICPP01).

Aldrich, E. M., J. Fernández-Villaverde, A. R. Gallant, and J. F. Rubio-
Raḿırez (2011): “Tapping the supercomputer under your desk: Solving dynamic equi-
librium models with graphics processors,” Journal of Economic Dynamics and Control,
35(3), 386–393.

Backus, J. (1977): “Can Programming Be Liberated from the von Neumann Style?,”
Communications of the ACM, 21(8), 613–641.

Bargen, B., and P. Donnelly (1998): Inside DirectX, Microsoft Programming Series.
Microsoft Press, Redmond, Washington.

Barros, K. (2009): “CUDA Tricks and Computational Physics,” Guest lecture, Course
6.963, Massachusetts Institute of Technology.

30Each member of the triumvirate of major CPU and GPU makers has plans for GPU and CPU integra-

tion. Intel now manufactures Sandy Bridge line of CPUs that packages OpenCL-capable graphics unit on
the same silicon die. Deeper integration is expected with Intel’s ”Knight’s Corner” many-core device, based

on the canceled Larrabee GPU (Seiler, Carmean, Sprangle, Forsyth, Abrash, Dubey, Junkins, Lake, Sug-

erman, Cavin, Espasa, Grochowski, Juan, and Hanrahan, 2008), which will allow parallel CPU application
portability without code modification. AMD Fusion family of processors with an on-die integrated GPU,

available since January 2011, supports OpenCL and Microsoft DirectCompute. NVIDIA’s Project Denver

aims at the similar integration of CUDA cores with ARM architecture CPUs, a dominant architecture for
mobile, hand-held and embedded devices.

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 25

Barros, K., R. Babich, R. Brower, M. A. Clark, and C. Rebbi (2008): “Blasting
through lattice calculations using CUDA,” Discussion paper, The XXVI International
Symposium on Lattice Field Theory, Williamsburg, Virginia, USA.

Beck, G. W., and V. Wieland (2002): “Learning and control in a changing economic
environment,” Journal of Economic Dynamics and Control, 26(9-10), 1359–1377.

Bennemann, C., M. W. Beinker, D. Eggloff, and M. Guckler (2008): “Teraflops
for Games and Derivatives Pricing,” Wilmott Magazine, pp. 50–54.

Bertsekas, D. P. (2001): Dynamic Programming and Optimal Control, vol. 2. Athena
Scientific, Nashua, NH, 2 edn.

(2005): Dynamic Programming and Optimal Control, vol. 1. Athena Scientific,
Nashua, NH, 3 edn.

Boyd, C., and M. Schmit (2009): “Direct3D 11 Compute Shader,” WinHEC 2008 pre-
sentation.

Boyer, M., D. Tarjan, S. T. Acton, and K. Skadron (2009): “Accelerating Leukocyte
Tracking using CUDA: A Case Study in Leveraging Manycore Coprocessors,” in 23rd
IEEE International Parallel and Distributed Processing Symposium, Rome, Italy.

Brent, R. P. (1973): Algorithms for Minimization without Derivatives. Prentice-Hall,
Englewood Cliffs.

Brezzia, M., and T. L. Lai (2002): “Optimal learning and experimentation in bandit
problems,” Journal of Economic Dynamics and Control, 27(1), 87–108.

Buck, I. (2005): “Stream computing on graphics hardware,” Ph.D. Dissertation, Stanford
University, Stanford, CA, USA.

Chandra, R., R. Menon, L. Dagum, and D. Kohr (2000): Parallel Programming in
OpenMP. Morgan Kaufmann.

Chapman, B., G. Jost, and R. van der Paas (2007): Using OpenMP: Portable Shared
Memory Parallel Programming, Scientific and Engineering Computation Series. MIT
Press, Cambridge, MA.

Chong, Y. Y., and D. F. Hendry (1986): “Econometric Evaluation of Linear Macro-
economic Models,” The Review of Economic Studies, 53(4), 671–690.

Coleman, W. J. (1992): “Solving Nonlinear Dynamic Models on Parallel Computers,”
Discussion Paper 66, Institute for Empirical Macroeconomics, Federal Reserve Bank of
Minneapolis.

Conn, A. R., N. I. M. Gould, and P. L. Toint (1997): “A Globally Convergent Aug-
mented Lagrangian Barrier Algorithm for Optimization with General Inequality Con-
straints and Simple Bounds,” Mathematics of Computation, 66(217), 261–288.

Creel, M. (2005): “User-Friendly Parallel Computations with Econometric Examples,”
Computational Economics, 26(2), 107–128.

Creel, M., and W. L. Goffe (2008): “Multi-core CPUs, Clusters, and Grid Computing:
A Tutorial,” Computational Economics, 32(4), 353–382.

Doornik, J. A., D. F. Hendry, and N. Shephard (2002): “Computationally-intensive
econometrics using a distributed matrix-programming language,” Philosophical Transac-
tions of the Royal Society of London, Series A, 360, 1245–1266.

Doornik, J. A., N. Shephard, and D. F. Hendry (2006): “Parallel Computation in
Econometrics: A Simplified Approach,” in Handbook of Parallel Computing and Statistics,
ed. by E. J. Kontoghiorghes, Statistics: a series of TEXTBOOKS and MONOGRAPHS,
chap. 15, pp. 449–476. Chapman & Hall/CRC, Boca Raton, FL USA.

Easley, D., and N. M. Kiefer (1988): “Controlling a Stochastic Process with Unknown
Parameters,” Econometrica, 56(5), 1045–1064.

Ferrall, C. (2003): “Solving Finite Mixture Models in Parallel,” Computational Econom-
ics 0303003, EconWPA.

Ghuloum, A., E. Sprangle, J. Fang, G. Wu, and X. Zhou (2007): “Ct: A Flexible
Parallel Programming Model for Tera-scale Architectures,” White paper, Intel Corpora-
tion.

26 SERGEI MOROZOV AND SUDHANSHU MATHUR

Goffe, W. L., G. D. Ferrier, and J. Rogers (1994): “Global optimization of statistical
functions with simulated annealing,” Journal of Econometrics, 60(1-2), 65–99.

Goldberg, D. E. (1989): Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA.

Gropp, W., E. Lusk, A. Skjellum, and R. Thakur (1999): Using MPI: Portable Paral-
lel programming with Message Passing Interface, Scientific and Engineering Computation
Series. MIT Press, Cambridge, MA, 2 edn.

Harris, M. (2005): “Mapping Computational Concepts to GPUs,” in GPU Gems, ed. by
M. Parr, vol. 2, chap. 31, pp. 493–500. Addison-Wesley.

Horst, R., and P. M. Paradalos (eds.) (1994): Handbook of Global Optimization, vol. 1
of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht,
The Netherlands.

Howes, L., and D. Thomas (2007): “Efficient Random Number Generation and Appli-
cation Using CUDA,” in GPU Gems, ed. by H. Nguyen, vol. 3, chap. 37, pp. 805–830.
Addison-Wesley.

Hwu, W. W. (ed.) (2011): GPU Computing Gems Emerald Edition, Applications of GPU
Computing Series. Morgan Kaufmann.

Judge, G. G., T.-C. Lee, and R. C. Hill (1988): Introduction to the Theory and Practice
of Econometrics. Wiley, New York, 2 edn.

Kendrick, D. A. (1978): “Non-convexities from probing an adaptive control problem,”
Journal of Economic Letters, 1(4), 347–351.

Kessenich, J., D. Baldwin, and R. Rost (2006): The OpenGL Shading
Language. Khronos Group.

Kirk, D. B., and W. W. Hwu (2010): Programming Massively Parallel Processors: A
Hands-on Approach. Morgan-Kaufmann.

Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi (1983): “Optimization by
Simulated Annealing,” Science, 220(4598), 671–680.

Kola, K., A. Chhabra, R. K. Thulasiram, and P. Thulasiraman (2006): “A Soft-
ware Architecture Framework for On-line Option Pricing,” in Proceedings of the 4th Inter-
national Symposium on Parallel and Distributed Processing and Applications (ISPA-06),
vol. 4330 of Lecture Notes in Computer Science, pp. 747–759, Sorrento, Italy. Springer-
Verlag.

Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright (1998): “Convergence
Properties of the Nelder-Meade Simplex Method in Low Dimensions,” SIAM Journal of
Optimization, 9(1), 112–147.

Lee, A., C. Yau, M. B. Giles, A. Doucet, and C. C. Holmes (2010): “On the Utility
of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo
Methods,” Journal of Computational and Graphical Statistics, 19(4), 769–789.

Lee, V. W., C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey
(2010): “Debunking the 100X GPU vs. CPU myth: an evaluation of throughput comput-
ing on CPU and GPU,” SIGARCH Computer Architecture News, 38(3), 451–460.

Lewis, R. M., and V. Torczon (2002): “A Globally Convergent Augmented La-
grangian Pattern Search Algorithm for Optimization with General Constraints and Simple
Bounds,” SIAM Journal on Optimization, 12(4), 1075–1089.

Lindoff, B., and J. Holst (1997): “Suboptimal Dual Control of Stochastic Systems
with Time-Varying Parameters,” mimeo, Department of Mathematical Statistics, Lund
Institute of Technology.

Morozov, S. (2008): “Learning and Active Control of Stationary Autoregression with
Unknown Slope and Persistence,” Working paper, Stanford University.

(2009a): “Bayesian Active Learning and Control with Uncertain Two-Period Im-
pulse Response,” Working paper, Stanford University.

(2009b): “Limits of Passive Learning in the Bayesian Active Learning Control of
Drifting Coefficient Regression,” Working paper, Stanford University.

MASSIVELY PARALLEL COMPUTATION & DYNAMIC CONTROL 27

Munshi, A., B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg (2011): OpenCL
Programming Guide. Addison-Wesley Professional, Reading, Massachusetts.

Nagurney, A., T. Takayama, and D. Zhang (1995): “Massively parallel computation of
spatial price equilibrium problems as dynamical systems,” Journal of Economic Dynamics
and Control, 19(1-2), 3–37.

Nagurney, A., and D. Zhang (1998): “A massively parallel implementation of discrete-
time algorithm for the computation of dynamic elastic demand and traffic problems mod-
eled as projected dynamical systems,” Journal of Economic Dynamics and Control, 22(8-
9), 1467–1485.

Nelder, J. A., and R. Mead (1965): “A simplex method for function minimization,”
Computer Journal, 7, 308–313.

NVIDIA (2009a): CUBLAS Library. NVIDIA Corporation, Santa Clara, CA, 2.3 edn.
(2009b): CUFFT Library. NVIDIA Corporation, Santa Clara, CA, 2.3 edn.
(2009c): NVIDIA CUDA C Programming Best Practices Guide. NVIDIA Corpo-

ration, Santa Clara, CA 95050, CUDA Toolkit 2.3 edn.
(2010): CUDA CUSPARSE Library. NVIDIA Corporation, Santa Clara, CA.

NVIDIA (2011): NVIDIA CUDA C Programming Guide. NVIDIA Corporation, Santa
Clara, CA, 3.2 edn.

Paradalos, P. M., and H. E. Romeijn (eds.) (2002): Handbook of Global Optimization,
vol. 2 of Nonconvex Optimization and Its Applications. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Pflug, G. C., and A. Swietanowski (2000): “Selected parallel optimization methods
for financial management under uncertainty,” Parallel Computing, 26(1), 3–25.

Porteus, E. L., and J. Totten (1978): “Accelerated Computation of the Expected
Discounted Returns in a Markov Chain,” Operations Research, 26(2), 350–358.

Prescott, E. C. (1972): “The Multi-Period Control Problem Under Uncertainty,” Econo-
metrica, 40(6), 1043–1058.

Rahman, M. R., R. K. Thulasiram, and P. Thulasiraman (2002): “Forecasting
Stock Prices using Neural Networks on a Beowulf Cluster,” in Proceedings of the Four-
teenth IASTED International Conference on Parallel and Distributed Computing and Sys-
tems (PDCS 2002), ed. by S. Akl, and T.Gonzalez, pp. 470–475, Cambridge, MA USA.
IASTED, MIT Press.

Seiler, L., D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-
ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and

P. Hanrahan (2008): “Larrabee: A Many-Core x86 Architecture for Visual Comput-
ing,” ACM Transactions on Graphics, 27(3), 15 pages.

Sims, C. A., D. F. Waggoner, and T. Zha (2008): “Methods for inference in large-scale
multiple equation Markov-switching models,” Journal of Econometrics, 142(2), 255–274.

Spendley, W., G. R. Hext, and F. R. Himsworth (1962): “Sequential application of
simplex designs in optimization and evolutionary design,” Technometrics, 4, 441–461.

Svensson, L. E. O. (1997): “Optimal Inflation Targets, ’Conservative’ Central Banks, and
Linear Inflation Contracts,” American Economic Review, 87(1), 96–114.

Swann, C. A. (2002): “Maximum Likelihood Estimation Using Parallel Computing: An
Introduction to MPI,” Computational Economics, 19(2), 145–178.

The Portland Group (2010a): CUDA Fortran Programming Guide and Reference. The
Portland Group, Release 2011.

(2010b): PGI Fortran & C Accelerator Compilers and Programming Model. The
Portland Group, Version 1.3.

Tibbits, M. M., M. Haran, and J. C. Liechty (2009): “Parallel Multivariate Slice
Sampling,” Working paper, Pennsylvania State University.

Tomov, S., J. Dongarra, V. Volkov, and J. Demmel (2009): MAGMA Library. Uni-
versity of Tennessee, Knoxville, and University of California, Berkeley.

Wieland, V. (2000): “Learning by Doing and the Value of Optimal Experimentation,”
Journal of Economic Dynamics and Control, 24(4), 501–535.

28 SERGEI MOROZOV AND SUDHANSHU MATHUR

Zabinsky, Z. B. (2005): Stochastic Adaptive Search for Global Optimization. Springer.
Zenios, S. A. (1999): “High-performance computing in finance: The last 10 years and the

next,” Parallel Computing, 25(13-14), 2149–2175.

E-mail address: Sergei.Morozov@morganstanley.com,mathur.sudhanshu@gmail.com

	1. Introduction
	2. GPU Programming
	2.1. History
	2.2. Data Parallel Computing
	2.3. CUDA Programming
	2.4. CUDA C
	2.5. CUDA Fortran
	2.6. CUDA-supported Hardware
	2.7. CUDA Resources

	3. Case Study: Dynamic programming solution of learning and active experimentation problem
	3.1. Problem Formulation
	3.2. Dynamic programming

	4. CPU-based versus GPU-based Computations
	4.1. CPU-based computation
	4.2. GPU-based computation
	4.3. Speed comparison
	4.4. Code Tuning
	4.5. Discussion

	5. Concluding Remarks
	References

