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1. Introduction

The problem of conflict between information gathering and control quality was originally
introduced and discussed by A. A. Feldbaum in a sequence of four seminal papers from
1960 and 1961 (Feldbaum, 1960a,b, 1961a,b). The compromise between probing and con-
trol, or in Feldbaum’s terminology investigating and directing, lead to the concept of dual
control. Feldbaum was the first to show that, in principle, the optimal solution can be found
by dynamic programming, via what later became known as Bellman functional equation.
The numerical problems when solving the functional equation are very large and only few
simple examples have been solved. More so, it is difficult to state conditions under which
the solution to the imperfect information dynamic programming problem actually exists.
Accordingly, many attempts have been made to find simpler suboptimal solutions and com-
pare with optimal dual control solutions when the latter could be found. While the main
development effort originated in the engineering literature, the idea of the tradeoff between
caution and probing impressed economists as well. Indeed, control with dual features is most
advantageous when it is necessary to rapidly find good estimates, when the initial estimates
are of poor quality, and when the parameters of the process evolve rapidly or in the manner
not well understood (Wittenmark, 1995). That these are precisely the characteristics of the
realm of economics was argued in Bar-Shalom and Wall (1980); Kendrick (1982); Wieland
(2000b).

2. Stabilization and Probing Tradeoff

In the dual control, whether optimal or suboptimal, it is necessary to have both stabilizing
and probing features. Both parts of the control law can be obtained in a variety of ways.
Stabilizing part of the control action could be further classified in accordance with the
amount of uncertainty it is willing to tackle. At one extreme, there’s certainty equivalence
that disregards the parameter uncertainty altogether. At the other extreme are various
cautious policies, so called because they hedge against poor process knowledge. Accordingly,
the extant literature, both in economics and engineering, explored above features in some
detail.

3. Passive Learning Controls

3.1. Certainty Equivalent Control. Early certainty equivalent tradition in economics is
rooted in the work of Theil (1957), predating the discovery of the dual control. One of the
first application of this approach to macroeconomic stabilization was Holt (1962).

3.2. Parameter Uncertainty and Cautionary Control. Nearly simultaneously, the
new genre of literature appeared that took cautious feature seriously. Indeed, an optimal
adaptive control under model uncertainty, dual or not, should also take the quality of the
parameter estimates into consideration. A first example of this kind of control is cautionary
myopic control, which is short-sighted and looks only one step ahead. As such it optimizes
expected one-stage cost-to-go criterion. Brainard (1967) is one of the first macroeconomic
applications in the new genre. A remarkable finding of that paper was that with multiple
control instruments it is optimal to employ all of them. The engineering literature that was
drawn on by economists near the start of this work was the paper by Farison, Graham,
and Shelton (1967) and the book by Aoki (1967). Other early contributions include Shupp
(1972) venturing outside linear-quadratic specification, Henderson and Turnovsky (1972)
extending cautionary feature to dynamic setting and continuous time, Chow (1973) gen-
eralizing the state process to the general linear ARMA type, Kendrick and Majors (1974)
using state augmentation to derive cautious control when unknown multiplicative param-
eters drift over time, Turnovsky (1975) studying the choice of policy instruments in the
advanced dynamic monetary equilibrium model, Chow (1978) evaluating the outcomes of
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the macroeconomic policies, Craine (1979) analyzing the differences in the optimal mone-
tary policy depending on whether the dynamic parameter uncertainty is driven by direct
policy impact uncertainty or by the uncertainty about the transition dynamics, etc. An
undesired consequence of caution introduced by taking account of poor process knowledge
was found that the gain in the controller could decrease. With subdued control signals less
information will be gained about the process. If system’s parameters are sufficiently strongly
time-varying, the parameter uncertainties will increase and even smaller control signals will
be generated, creating a vicious circle and eventual turn-off of the control. The problem
has been reported in Åström and Wittenmark (1971); Wieslander and Wittenmark (1971).
It was then recognized that some disregard of parameter uncertainty may be beneficial to
move closer to the dual control action.

4. Dual Control by Dynamic Programming

As for the dual control, an early paper by Prescott (1972) considered a toy multi-period
control problem with the data generated by the simple regression with an unknown slope,
xt = βut+ǫt. Assuming linear quadratic Bayes risk with the entire weight given to deviation
of yt from its target, he solved for the optimal learning policies as functions of beliefs for
several small values of the planning horizon (up to 6). The results showed little difference
between the myopic and optimal policies except under very large parameter uncertainty. His
numerical study also showed the myopic policy to be superior to the certainty equivalent
policy in approximating the optimal policy. Computing optimal solution was not difficult
even for fledgling computer technology of the era.

5. Certainty Equivalence Research Continued

In the meantime, the certainty equivalence alternative continued to generate insightful re-
sults, largely due to its tractability. We mention detailed study of Pindyck (1973a,b) on the
10-equation macroeconomic model for the U.S., Abel (1975) on application to ”monetarist-
fiscalist” debate, and Fair (1978) on the assessment of macroeconomic performance of U.S.
presidential administrations. Taylor (1974) demonstrated asymptotic unbiasedness and ef-
ficiency of least-squares certainty equivalent rules in the Prescott’s (1972) model. Taylor
(1974) also indicates analytically, albeit for a rather simple model, why the certainty equiv-
alence method does about as well as cautionary myopic and dual methods. Taylor’s results
were confirmed experimentally by Anderson and Taylor (1976) in a more general setting
without lagged dependent variables. The certainty equivalent had also shown some improve-
ment over cautionary myopic approach, especially in circumstances where some disregard of
caution could be beneficial. In particular, Åström (1983), extending Prescott’s analysis to
include an autoregressive term, xt = βut+xt−1+ǫt, showed that the optimal policy can take
relatively large and irregular control actions ut to probe the system when the Bayes estimate
µt−1 of β has poor precision. He also found that the optimal solution is well approximated
by the certainty equivalent rule ut = −xt−1/µt−1. The burden of computation mounted
as it took over a week to solve two-dimensional backward induction recursion for T = 30
periods. While the unintended probing signal injected by the certainty equivalent control in
the system with autoregressive dynamics, and hence long-lived impulse response, seemed to
reinforce learning, it also became clear that the certainty equivalence principle suffers from a
general identifiability problem, namely the parameter estimates may converge with positive
probability to a false value (Goodwin and Sin, 1984; Becker, Kumar, and Wei, 1985; Ljung,
1987; Kumar, 1990). Taylor’s result only applies when a cost criterion is output variance
and cannot be extended to general control laws. Indeed, a fundamental result of system
identification theory is that the input signal to the process must be persistently exciting or
sufficiently rich to achieve consistency in the parameter estimates (Ljung, 1987). In adap-
tive systems, the input signal is driven by feedback, and in this case there’s no guarantee
that the process will be properly excited. Moreover, the fact that not even the estimated
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model stabilizability is ensured may cause a paralysis in the certainty equivalent control law
selection (de Larminat, 1984).

6. Limit Beliefs

Even so, both cautionary myopic and optimal dual controls may lead to incorrect limit
beliefs. Conversely, the convergence of beliefs does not imply optimality in control. This
curious finding was reported in Easley and Kiefer (1988). The reason is virtually the same.
Convergence to the correct limit beliefs could fail, unlike in the standard consistency proofs
in econometrics, because along any sample path for which beliefs converge, the sequence
of actions may also be converging. If actions converge too fast, they may fail to generate
enough information to identify the parameter. Examples are given in McLellan (1984);
Kihlstrom, Mirman, and Postlewaite (1984). Easley and Kiefer (1988) also prove that limit
beliefs are a subset of beliefs that are invariant under Bayesian learning with cautionary
myopic action. In most one parameter problems the decision maker will learn the correct
value of parameter because any action is informative. They also conclude that the likelihood
of learning the truth is higher the more patient the decision-maker.

7. Anticipating Utility

More advanced strategies for cautionary control have also been developed, sometimes
under the general rubric of expected optimal feedback (Kendrick and Amman, 2006). A par-
ticular multi-period extension of cautionary myopic policy could be associated with what is
known elsewhere as anticipated utility (Quiggin, 1982; Sargent, 1993; Kreps, 1998; Sargent,
1999; Evans and Honkapohja, 2001). In this approach, at each date the decision-maker solves
the dynamic program pretending that the model uncertainty is time-invariant. Ironically,
this decision delivers a time-varying decision rule that depends on that date beliefs about
model parameters. The irony stems from a delusion on the part of the controller of time-
invariant beliefs about the model uncertainty which is invalidated every subsequent period
as beliefs are, in fact, updated. The anticipated utility approach is broadly recommended
by Kreps (1998) for use in games and dynamic economic models. Cogley and Sargent (2006)
and Cogley, Colacito, and Sargent (2005) justify the anticipated utility models on the basis
of the excellent approximation that it provides to fully rational Bayesian decisions that do
anticipate that beliefs will continue to evolve going forward in time, while significantly re-
ducing the computational complexity, at least in the permanent income economy alternating
between two regimes and when the precautionary motives are muted. Whether the results
extend to other settings is one of the prime stimuli for further research. Another is that
anticipated utility modeling strategy is popular in much of the macroeconomic literature on
learning. See, for example, Chow (1973); Craine (1979); Amman and Kendrick (1999).

Chow (1978) is one of the first to derive and use anticipating utility controls, which at
the time he labeled as optimal feedback control. Chow was keenly aware that, by ignoring
the possibility of reducing uncertainty through observations during the control process, the
anticipated utility cost-to-go function used to derive the anticipated utility control is not
what the decision maker should really expect. Chow argues that the anticipated utility
control exaggerates, and thus provides an upper limit to the measure of the effect of uncer-
tainty on the optimal control policy and the associated welfare cost. Surely, a control policy
that utilizes additional observations during the control process will be able to improve the
value of optimal control in the face of uncertainty. Correctly factoring the anticipation of
continuous modification of the joint density of unknown parameters into the decision rule,
with or without active experimentation, could only do better.

In Craine (1979), the unobserved coefficients are realizations from a serially independent
stationary stochastic process. The assumption of the independent identically distributed
draws of coefficients from the known joint distribution makes active component of control
redundant. The anticipating utility solution is passively optimal. The physical state state
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equation includes autoregressive term and a control term. It is then shown that when
the uncertainty about the impact of policy is dominant, the anticipating utility is rela-
tively dormant, but when uncertainty about the transition dynamics prevails, a very active
counter-cyclical policy results. The divergence of outcomes depending on which transmission
channel contains more uncertainty raises an interesting question of whether it is preserved
in the models with active experimentation motive.

Relative to the certainty equivalent benchmark, Amman and Kendrick (1999) find that
the potential damage from ignoring variances and covariances of parameter estimates could
be substantial. Their simple example contrasts the certainty equivalent solution with the
anticipated utility control. The certainty equivalent control, being more impulsive, out-
performs in the thin majority of simulated dynamic paths. Yet there are some dynamic
paths along which faulty parameter estimates lead the certainty equivalent solution seri-
ously astray. It is then prudent to guard against poor initial estimates by factoring the
degree of uncertainty about parameter estimates into a policy calculations. Terminology
’anticipated utility’ is somewhat recent and is not widely accepted. Rausser (1978) classi-
fied anticipating utility approach as sequential stochastic control, while Chow (1975) had
referred to this approach as control without learning. ’Sequential stochastic control’ label is
justified on the grounds that observations will indeed be available in the future but will not
be used to adapt the probability distributions on the parameters. Rausser distinguishes this
approach from the more general open loop feedback class because the unknown parameters
are treated as independent identically distributed random variables for each period of the
planning horizon. In contrast, the open loop feedback rule does not necessarily restrict the
joint distribution of the future states and parameters. Open loop feedback may therefore
encounter the laborious task of determining the expectation of the product of the param-
eters and the states under multiplicative uncertainty and autoregressive state dependence.
Tse and Athans (1972), for example, sidestep the problem by assuming that the parameter
multiplying the state is non-random, while Ku and Athans (1973) assume that the expected
product of the parameter and the state is equal to the product of the expectations.1

Cogley, Colacito, and Sargent (2005) is a recent application of the anticipating utility to
the debate on macroeconomic stabilization and learning about the inflation-unemployment
tradeoff. Their policy-makers’s prior probability over two drastically different prescriptions
of the inflation-unemployment tradeoff is one part of his state vector, with the lag of target
state variable (unemployment) being the other. For two models calibrated to U.S. data
through the early 1960s, they isolate the difference the anticipated utility cost-to-go and
dynamically optimal cost-to-go with active experimentation. The discrepancy is ascribed
to the benefit of experimentation and is shown to be small. In this setup, the passive antic-
ipated utility learner observes enough variation in the data that he is able to discriminate
between the two models almost as fast as the active experimenter. In our view, Cogley,
Colacito, and Sargent (2005) also addresses a common criticism of adaptive control that
significant parameter uncertainty may indicate not just the potential value of an adaptive
control scheme but that the model may be misspecified. Indeed, the decision-maker’s ex-
perimentation in Cogley, Colacito, and Sargent (2005) is directed not towards learning the
parameters of the two competing models but toward the discrimination between them. A
follow-up study Cogley, Colacito, Hansen, and Sargent (2008) explores how concerns for ro-
bustness alter the costs and benefits of experimentation, and find examples where robustness
can either enhance or impede active experimentation.

A form of suboptimal control that is intermediate between the dual optimal control and
anticipating utility control could be obtained if we assume that some but not all of the
measurements will in fact be taken in the future, and the remaining measurements will not
be taken. This method allows one to deal with those measurements that are troublesome

1In problems with many future periods, the divergence of the two due to the missing covariance term
can seriously skew the prediction. This is because higher order moments of the joint normal distribution
grow progressively larger.
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and complicate the solution. For example, in the limited lookahead framework, losses that
are far into the future could be evaluated under beliefs that are anticipated to persist at
some intermediate date, not necessarily immediately preceding the distant date. Doing so
can help economize the number of anticipated posterior distributions to keep the track of.
Bertsekas (2005) refers to this concept as partial open loop feedback control. We’ll call it
partially optimal anticipating utility policy.

8. Markov Jump-Linear Quadratic Model

A very explicit but still relatively general form of model uncertainty that remains tractable
is given by a so-called Markov jump-linear-quadratic (MJLQ) model, where multiplicative
model uncertainty takes the form of different regimes that follow a finite-state Markov chain.
MJLQ models have been widely studied in the engineering control literature and found some
economic applications (Costa and Fragoso, 1995; do Val, Geromel, and Costa, 1998; do Val
and Başar, 1999). Costa, Fragoso, and Marques (2005) devoted entire monograph to filter-
ing, optimal control, partial information control and robust control of discrete time Markov
jump linear systems. Just like in the anticipated utility case under multiplicative uncer-
tainty in the linear quadratic Gaussian framework, the value function stays quadratic in
the physical state, but now with coefficients that depend on the regime. These coefficients
satisfy coupled Riccati recursions and could be solved quickly by doubling algorithm after
uncoupling (Hansen and Sargent, 2004; do Val, Geromel, and Costa, 1998). If regimes are
not observable, the optimal policy will depend on the probability distribution over possible
regimes. In this case, the value function of the expected optimal feedback remains qua-
dratic in the physical state, but with weights that depend on the probability distribution
over potential regimes. Solution for the entire simplex of regime probabilities would re-
quire function approximation methods, but for any particular probability distribution over
regimes, the MJLQ solution could be computed easily by using Riccati recursions over reced-
ing finite horizon control. MJLQ framework appeared in some recent economic applications.
Zampolli (2005) uses an MJLQ model to investigate monetary policy under transitions be-
tween regimes with and without asset-market bubble. Blake and Zampolli (2005) extend
the model with the inclusion of the forward-looking variables and discretion equilibria. do
Val and Başar (1999) study macroeconomic stabilization in MJLQ framework with unob-
served regimes. Svensson and Williams (2005) combine the two and study equilibria with
commitment in timeless perspective of Svensson and Woodford (2005). All these applica-
tions abstract entirely from the probing component. Svensson and Willams (2006) is the
first laudable study of active learning and experimentation in a relatively small-scale MJLQ
framework that also includes forward-looking variables. Results of their study indicate that
while the benefits of learning are of first order of importance, the gains from active experi-
mentation are of secondary importance or even insignificant. A new feature of the tradeoff
between experimentation and control that is absent in the backward-looking case is a subtle
interaction with the forward-looking commitment constraint. With negative Lagrange mul-
tiplier on the forward-looking constraint there is larger loss penalty for observed state and
control in some outlying regions with large probing component. In those regions, strong
desire to experiment is dampened. Yet in other regions of high experimentation motive the
Lagrange multiplier on the forward-looking constraint is positive, and so the probing effect
is reinforced. As a result, the policies acquire notable asymmetry. In economic terms, the
pivotal concerns are not solely emending inference versus injecting destabilizing impulse,
but also upsetting the expectations of future variables. Resulting balance amongst these
factors as embodied in the dual optimal policy could be rather gordian.

MJLQ approach is ideally suited to the cases when unknown coefficients change over
time. In these cases, the näıve anticipating utility control is more ignorant, and likely to
concede further advantage to the fully optimal policy. Models with continuously adapting
drifting coefficients such random walk or ARMA processes are not tractable analytically
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because of continuous dependence of the optimal policy on the probability distribution over
possible continuum of regimes. However, they can be well approximated by the discrete
finite regime Markov chain with the optimal solution admitting explicit form.

9. Coefficient Augmentation and Taylor Series Expansions for Dual

Control

So called coefficient-augmented closed loop policy of Kendrick and Majors (1974) is worth
mentioning. For one, the paper tackled more difficult case where unknown coefficient drifted
over time. More important novelty was that they augmented the physical state vector
with the vector of random coefficients, linearized the resulting problem, and obtained a
feedback rule for the augmented problem. Consequently, an adaptive feedback solution of
this kind made policy a function of both the coefficients and the usual state variables. Since
the coefficients are not observed but are instead estimated an expectation of the adaptive
feedback policy can be derived and used. The new policy does not coincide with the certainty
equivalent control and there could be substantial difference between the two. To be sure,
certainty equivalent control treats uncertainty as if it were an additive noise and thus does
not take an explicit account of the source of uncertainty. The augmented closed loop rule
takes account of the source of uncertainty through an approximation scheme. One of the
consequences is that the variance of random parameter innovations matters.

The use of Taylor series expansions of the cost-to-go functions introduces non-trivial
choice of the path to linearize around. Kendrick and Majors (1974) were among the first to
appreciate this situation. Is it better to linearize around the certainty equivalent solution
or around the desired path xt = x∗? Kendrick and Majors (1974), on the basis of a small
number of Monte Carlo runs, find that if one linearizes and penalizes about the desired path
instead of the certainty equivalent solution, the quality of the linear approximation may not
be as good but the adherence to the desired path, which is the ultimate goal, would usually
be better. As a result, they recommend that in any procedure involving linearization one
should experiment with various candidate paths, with the choice depending on the degree of
nonlinearity in the model, the degree of separation between candidate loci of the expansion
as well as on the particular set of Monte Carlo runs. Alternatively, a more comprehensive
approach that is suggested is to choose the nominal path, about which one linearizes, as
part of the optimization procedure. Denham (1964) shows how this can be done. In the
context of synthesizing nonlinear control, the optimal choice of the nominal trajectory to
minimize state-variable estimation errors propagating along the nominal trajectory, is known
as trajectory shaping (Van der Stoep, 1968).

While instructive in its own right, Kendrick and Majors (1974) is an important prelude
to the use of the second order expansions for the dual control in a series of papers by David
Kendrick (Kendrick, 1978, 1979, 1982; Amman and Kendrick, 1999; Kendrick, 2002). They
could also be traced back to the contributions by Tse, Bar-Shalom, and Meier (1973); Bar-
Shalom, Tse, and Larson (1974); Bar-Shalom and Tse (1976) to the engineering literature.
In these papers, the state is also augmented to include uncertain multiplicative coefficients.
In addition, the complete adaptive dual control problem is decomposed explicitly into four
components – current control, future deterministic control, future cautionary control and
future probing control. The last two components comprise future perturbation control. The
key distinguishing feature of many approximate actively adaptive schemes is how they han-
dle the dependence of future information on present control. In this regard, it should be
noted that the augmentation of the state results in the information state (the joint distribu-
tion of states and parameters) to be either infinite-dimensional or grow polynomially with
the planning horizon. Tse, Bar-Shalom, and Meier (1973) deal with this quandary by main-
taining only the first two moments of augmented state estimate. These updated estimates
can be computed by any one of the number of methods including the second order extended
Kalman filter. The optimal cost-to-go function also undergoes second order expansion in
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the augmented state around some tentative nominal trajectory (typically trajectory that is
expected to occur under the certainty equivalent control). Bar-Shalom and Tse (1976) found
that the more sophisticated actively adaptive schemes did not always perform better than
the open loop feedback or even the certainty equivalent rule. Norman’s 1976 results, using
a first-order approximation, also indicate that the performance of alternative schemes is
problem-specific. When computational cost is explicitly considered, Norman (1976) isolates
some special cases for which the anticipated utility as well as the certainty equivalent rules
appear to be the most desirable schemes. More generally, Norman and Jung (1977); Norman
(1981, 1994) study the computational complexity of alternative dual control formulations
for linear quadratic models, possibly with long lags, and possibly structural. Amman and
Kendrick (1994, 1997) is a Monte Carlo based comparative study of second order linearized
dual control versus anticipated utility (under the label of optimal feedback with parameter
uncertainty) on a set of small macroeconometric models. Dual control performance was
found to prevail in most models.

A related actively adaptive control procedure has also been advanced by Chow (1975) for
the case of a quadratic but non-additive criteria function, and linear or nonlinear state evo-
lution equation. Chow’s method applies a second order Taylor series expansion in perfectly
measured states to the relevant cost-to-go function around exogenously chosen nominal path
using numerical differentiation. Chow’s method differs from that of Tse, Bar-Shalom, and
Meier (1973) and Kendrick (2002) in some important respects. First, there’s no augmenta-
tion of unknown coefficients to the state vector. Second, Chow first takes the expectation
of the cost-to-go function and then applies the second order approximation, whilst Tse,
Bar-Shalom, and Meier (1973) reverse these steps. As a result, it is no longer possible to
isolate the costs of perturbation control explicitly.

Another linearization approach is possible in the model with linear evolution equation
with unknown but constant coefficients, quadratic criterion and in the absence of the mea-
surement noise (MacRae, 1972, 1975). Given such specification, the conditional mean and
covariance of the parameter estimates completely characterize the relevant information state.
MacRae simplifies the problem by replacing unknown future realizations by their conditional
means in the covariance update equation, while using martingale property of conditional
expectations to nullify the expected mean dynamics. This results in the deterministic co-
variance update equation which is introduced into the cost-to-go function as a deterministic
constraint along with an associated matrix of Lagrange multipliers. The augmented crite-
rion function remains quadratic in control and can easily be computed analytically given its
coefficients. However, the derivation of these coefficients requires solving two-point bound-
ary value problem in order to satisfy the constraint on the covariance evolution. Essentially
similar suggestion is given by Pronzato, Kulcsár, and Walter (1996) and Kulcsár, Pron-
zato, and Walter (1996) relying on numerical minimization and short lookahead horizons.
Another variation here could be to reduce the dimensionality of the optimization problem
by setting controls that are further away to either predetermined values or to outcomes of
simpler rules such as cautionary myopic, anticipating utility, etc. This way learning will be
anticipated but not fully exploited for the current decision-making.

10. Limited Lookahead Approaches

In the face of intensifying computational difficulties in approaching the dual optimal
control and certain inadequacies of the non-dual solutions, the search for simpler solutions
with both cautious and probing features continued in the 1980s. A natural next step was to
try to solve the two-period dynamic program. Bar-Shalom, Mookerjee, and Molusis (1983)
presented adaptive dual controller for a multi-input multi-output autoregressive moving
average system by solving the corresponding two-period dynamic programming problem.
Reportedly, two-step control showed good performance. In particular, it avoided the turn-
off malady and accelerated the convergence of learning process. A two-step-ahead cost-to-go



10 SERGEI MOROZOV

function is also considered in Sternby (1977). The two-step problem gives useful clues how to
make sensible approximations that retain the dual features. It may be useful for the infinite-
horizon dynamic programming formulations by mapping the regions with high curvature of
the cost-to-go function which is exactly where the probing component is most active and
where the discontinuities in control are most likely to appear. The simple limited lookahead
examples give some useful indications how suboptimal dual controllers could be constructed.
For example, to illustrate how the optimal dual control can switch between probing and
regulating consider hypothetical figure 1. In the figure, the expected loss function is given
for three possible values of a scalar state, and has several minima. For the dashed curve local
minimum to the left gives the absolute minimum, while for the full line case the two local
minima have the same value. Finally, for the dash-dotted curve the local minimum to the
right represents the global minimum. The control action will thus switch in character when
state is variable changes. This can be interpreted as that the control action is switching
between probing and control intentions.

Control 

Loss

Figure 1: Possible shape of the expected loss function as a function of control signal for
three close-by different values of state variable. The global minima for the three cases are
marked by dots.

The multi-step limited lookahead approaches can be also developed. The minimization
over several steps to obtain limited lookahead dual controller makes it possible to introduce
probing in the beginning or when the information about the process is poor and still gaining
by being able to make a better control towards the end of control horizon. From a dynamic
programming perspective, all that is required is to execute a limited number of cost-to-go
updates instead of iterating to convergence. Since in the dynamic programming approach,
the optimal cost-to-go function is implicit, curse of dimensionality in storage requirements
is not lifted, even though the computing time is reduced by orders of magnitude.

A key issue in implementing a limited lookahead policy is the selection of the cost-to-
go approximation at the final step. Limited lookahead policy with zero terminal cost is
simply the solution to the finite horizon dynamic subprogram within the infinite horizon
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problem but it could still be difficult to obtain. One possibility is to trade off accuracy
of the cost-to-go approximation with lookahead horizon. In other words, by looking addi-
tional periods ahead, one can mitigate the effect of errors in the cost-to-go approximation
(Bertsekas, 2005). Cost-to-go approximations integral to the limited lookahead calcula-
tions could be arrived at in a variety of ways. For example, one can reduce the amount
of available information in the evaluation of the cost-to-go function. One way to achieve
this is to assume that no further information gathering will be available along the nomi-
nal path of beliefs (Pronzato, Kulcsár, and Walter, 1996; Kulcsár, Pronzato, and Walter,
1996; MacRae, 1972, 1975). Putting it differently, the future trajectory of beliefs is explored
as if no future shocks perturb the system while the future control does affect parameter
uncertainty. The approach could be viewed as an instance of preposterior analysis (Raiffa
and Schlaifer, 1961), where the value of information is anticipated by using statistics of fu-
ture measurements via algorithms based on the notion of closed loop control. Such control
schemes involve an experimental dimension that probes the system in anticipation of the
value of information to be derived from future observations. Pronzato, Kulcsár, and Walter
(1996) and Kulcsár, Pronzato, and Walter (1996) motivate the approach from the optimal
experimental design perspective as it strives to exploit the future information by controlling
the expected Bayesian Information Criterion matrix. Birmiwal and Bar-Shalom (1985) use
preposterior analysis to derive approximate prior probability densities to describe future
learning, and, hence, approximate Bellman functional equation by evaluating the value of
future information gathering. In cases where autoregressive state coefficients are known, if
at all present, this approach amounts to propagating forward the deterministic controlled
path of belief variance, with possible further simplifications as desired, and then solving sim-
plified Bellman functional equation. The minimization step could incorporate the expected
variance dynamics by the direct substitution as in Pronzato, Kulcsár, and Walter (1996);
Kulcsár, Pronzato, and Walter (1996) or by attaching Lagrange multipliers to constraints
on the variance dynamics as in MacRae (1972, 1975). If autoregressive coefficients are them-
selves uncertain, the evolution of variance is no longer deterministic. In this case, a Taylor
series expansion of beliefs around the nominal path could be used. MacRae (1972, 1975)
find that for the unknown autoregressive parameter case, it is no longer necessarily the case
that adaptive covariance policy is rather inactive when uncertainty is large and compensates
with aggressive policy action once the effect of policy action is known with more precision.
As parameters associated with current controls and with lagged observed states can be arbi-
trarily correlated, no general implications about the relative control intensity can be drawn.
For multi-coefficient uncertainty specification such as this, although larger variances imply
more uncertainty about model parameters, large correlation imply more information, and
larger incentive to experiment. Compared to the model of Wieland (2000a), which also fea-
tures bivariate parameter uncertainty, correlation is even more important, because incorrect
beliefs about persistence can have lasting repercussions.

Incorporation of the predictive evolution of belief variance belongs to a more general class
of cost-to-go approximations that involves a heuristic embracements of certain features. The
manner in which the cost-to-go approximation is selected is very much problem dependent.
In some problems good heuristics come from a cost-to-go approximation based on the so-
lution of a simpler problem that is tractable computationally or analytically (Bertsekas,
2005). For example, one can base a cost-to-go approximation on a suboptimal policy such
as certainty equivalent or anticipating utility policy. Generally, any reasonably good subop-
timal policy can be used to produce a cost-to-go approximation. For the limited lookahead
context in an infinite horizon problem, the cost-to-go function of the suboptimal solution
can be used to improve the terminal cost-to-go representation. The hybridization approach
could be iterated provided it is not too expensive to do so. These ideas have been suc-
cessfully applied in the industrial engineering (Kimemia, Gershwin, and Bertsekas, 1982;
Kimemia, 1982; Tsitsiklis, 1984). No economic applications has used these hybrids yet, to
our knowledge.
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The idea of the limited lookahead horizon need not be approached from the recursive
viewpoint of Bellman equation. For short horizons, it could be dealt with directly, giving up
the convenience of temporal separation of controls. Direct formulation results in multivariate
optimization of the performance index with controls for all time-periods decided at time zero
even though the decisions are acted upon one at a time. When the next period rolls in, the
problem is re-optimized again. The direct route is taken by Maitelli and Yoneyama (1994);
Lindoff and Holst (1997a,b). While the solution is often not explicit, the advantage is that
root-finding and minimization with moderately large number of variables is not subject to
the curse of dimensionality.2 The obvious disadvantage is cumbersome calculations involved
in computing higher order moments of the uncertain parameters, or multiple passes of
Kalman smoother recursions. If desired, laborious algebra could be further cut down by
some kind of approximations while the retaining the dual feature.3 The study of Maitelli
and Yoneyama (1994) does exactly that by approximating high order cross-moments with
products of lower order ones. In terms of performance, the simulation study of Lindoff
and Holst (1997b) suggests that cautionary myopic policy is able to control only low order
systems with slow varying parameters. For higher order systems or faster time-variations,
the cautionary myopic policy has the tendency to be locally unstable. An approximate
two-step predictive controller of Maitelli and Yoneyama (1994), active suboptimal dual
controller (ASOD) of Wittenmark and Elevitch (1985) and exact two-step predictive control
of Lindoff and Holst (1997a) are shown to be superior, especially for higher order systems
or faster time-variations. Of the three, the exact two-step predictive control is often the
best, despite also having the largest variance of the parameter governing the slope of policy
response. Indubitably, the main goal is to control the system so the resulting excessive
variance of parameter estimates is of minor subsidiary importance as long as the control
performance is good. In comparison, the approximate two-step control has a propensity to
concentrate on estimating the unknown parameters at the expense of controlling the output.
The two-step limited lookahead control was also more robust against mis-specifications in
the simulated linear models. The ASOD control of Wittenmark and Elevitch (1985), that
we just mentioned, is a different kind of extension to the cautionary myopic control. Its
criterion function includes ad hoc term that rewards good parameter estimates. It works
well for low order systems but may have local instability issue for more complex systems.
Another drawback is the arbitrariness in the weight given to the reward term. The weight
must be chosen correctly to obtain good performance, but it is not known how to do so, in
general.

11. Dynamic Programming Revisited

Wieland (2000a) revisited the dynamic programming approach in a more complex model
featuring bivariate parameter uncertainty – about the intercept and slope of the regression.
The result of Prescott on the strong similarity between cautionary myopic and optimal
policies is reversed, with sizeable differences detected between the two detected under a
non-negligible range of initial beliefs, or in other words a sizeable extent of optimal ex-
perimentation. This results accords with the intuition of Kendrick (1979, 1982) predicting
larger role for the experimentation with more sources of uncertainty.4 Additionally, Wieland

2It could be shown that complexity of multivariate minimization and root-finding grows polynomially in
the number of variables if the objective is mostly smooth.

3Rausser (1978) argues that most approximations performed on the original system will lead to the
passively adaptive schemes, while those performed in the process of deriving the optimal rule will generally
be actively adaptive.

4On the other hand, larger uncertainty for a given number of sources does not necessarily imply more
experimentation. For example, Kendrick (1982) finds that active probing is most active for the moderate
magnitude of parameter uncertainty. Beyond that range, active experimentation is too costly as the system
dynamics will eliminate most of it anyway, in due course. At the other extreme, when the parameters are
almost certain, active experimentation diminishes due to the lack of benefit.
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(2000a) explored possible limit beliefs that could be reinforced by uninformative actions.
The optimal policy typically exhibits a discontinuity at such beliefs and therefore avoids un-
informative actions that would render incorrect beliefs self-reinforcing. In contrast, myopic
behavior, could lead to persistent and frequent bias in beliefs and actions.

Beck and Wieland (2002) develop a version with single unknown impact of the policy
action but with known autoregressive dynamics in the observed target state. The focus is
on the uncertainty regarding a parameters that is multiplicative to the decision variable is
motivated by the crucial nature of the tradeoff between current control and estimation. In
addition, the unknown coefficient drifts over time, following univariate random walk with
known innovation variance. In this framework, learning never ceases, but instead beliefs
continually track the latent state. Again, noticeable levels of experimentation are detected
for the moderate to large levels of uncertainty. Except near the deterministic steady state,
the optimal decision rule remains less activist than a certainty equivalent rule and induces
gradualism. Gradualism disappears in the vicinity of the deterministic steady state, where
aggressive experiments are repeatedly undertaken. The extent of experimentation dimin-
ishes with the degree of parameter variation. The justification lies in the lower expected
payoff to probing and obtaining more precise parameter estimates when the parameter is
going to elude precise estimation all over again. At the same time, steady-state fluctuations
are tolerated because they provide information about the unknown time-varying parameter
in perpetuity. As learning doesn’t converge, it never ceases. The possibility of significant
parameter uncertainty (current or future) cannot be ruled out at any time. Costly experi-
ments, especially in the neighborhood of the deterministic steady state are a device to guard
against such unpleasant contingency.

12. Finite Information State

When the parameter set consists of a finite number of values, it is easier to solve the
dual control numerically because taking expectation in the Bellman equation amounts to
summation. Casiello and Loparo (1989) apply preposterior analysis to derive approximate
optimal dual control. Bernhardsson (1989) solves the case where the gain of a first-order
system may take only two values.

13. Multi-Armed Bandit Problems

A version of the finite action set dual control problem is known as multi-armed bandit
problem (Robbins, 1952; Gittins, 1989; Whittle, 1982) whose solution is well understood
and developed. In the multi-armed bandit problem, the gambler has to decide which arm of
several different slot machines to play to maximize discounted expected reward in a sequence
of trials. The distinguishing feature of the bandit problems and the key to its tractability
is that the distribution of returns from one arm only changes when that arm is chosen.
The index theorem due to Gittins and Jones (1974) transforms the problem of finding the
optimal policy into a finite collection of stopping problems, one for each arm. The idea is to
find for each arm the stopping time that results in the highest discounted expected return
per discounted expected number of periods in operation from only playing this arm. The
Gittins index is the resultant highest discounted expected return, and the optimal policy
is to select in each period the arm with the highest Gittins index. The simplicity of the
solution is fragile and approximations are needed for many extensions. For example, Brezzia
and Lai (2002) develop an approximation to Gittins indices based on a numerical solution
of an optimal stopping problem for a limiting diffusion which is applicable even in cases
where the optimal solution does not reduce to an index, e.g., in finite horizon problems or
problems with switching costs. Making use of these approximations to the optimal policy,
Brezzia and Lai analyze the value of experimentation and show that unless the horizon or
the discount factor are large enough, experimentation does not have much value compared
to the simple myopic policy. Multi-armed bandits have been generalized to the continuous
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time setting (Kaspi and Mandelbaum, 1998). Further, non-stationary bandit problem where
the agent is faced with the increased complexity of detecting changes in its environment
have been examined as well. For example, Koulouriotis and Xanthopoulos (2008) study a
non-stationary, discrete-time, finite horizon bandit problem with a finite number of arms
and Gaussian rewards and apply a family of suitably chosen ad hoc learning algorithms
that offer intuition-based solutions to the exploitationexploration trade-off and so have the
advantage of not relying on strong theoretical assumptions while in the same time can be fine-
tuned in order to produce near-optimal results. In particular, they present an evolutionary
algorithm that was implemented to solve the non-stationary bandit problem along with ad
hoc solution algorithms, namely action-value methods with e-greedy and softmax action
selection rules, the probability matching method and finally the adaptive pursuit method.
Positive probability of incomplete learning in bandit problems is ascertained in Rothschild
(1974b); Sundaram (1992) and Brezzi and Lai (2000) as an outcome of existence of a set
with positive probability on which an inferior arm can be played forever once it is chosen.
Bergemann and Välimäki (2006) survey the literature on multi-armed bandit models, various
extensions and applications in economics.

14. Loose Ends

The vast array of suboptimal solutions listed so far is akin to the expansive and perplex-
ing ’wilderness of bounded rationality’ (Ireland, 2003) and it does not end here. There are
many more approximating ideas and we’ll only provide short, perhaps inadequate glimpse
at the rest of them. Just as learning models themselves allow agents to entertain diverse
and approximate models, these approximate dual control ideas let us learn when and how to
offer practical advice to the policy maker with an interest in the macroeconomic stabilization
under model uncertainty. Ad hoc modifications of the loss function is used in Wittenmark
and Elevitch (1985). Milito, Padilla, Padilla, and Cadorin (1982) add squared prediction
error into the quadratic loss function. A similar approach is used in Yame (1987) from the
information theoretic perspective. Alter and Bélanger (1974) introduce constraint on the
trace of one step ahead information matrix. Hughes and Jacobs (1974) propose a limitation
on the minimum value of control input. Chan and Zarrop (1985) include the variance of
an auxiliary output and its prediction error as additional penalty terms in the loss func-
tion. Padilla, Padilla, and Cruz Jr. (1980) supplement the loss function with two sensitivity
functions designed to capture parameter uncertainty. Cosimano (2003) applies first-order
perturbation method in the vicinity of the deterministic augmented linear regulator. This
allows to express approximate optimal solution as a combination of the certainty equivalent
solution and a term that captures the impact of uncertainty on the decision-maker’s value
function. Gapen and Cosimano (2005) compare the costs and benefits of this approach
relative to the dynamic programming solution in the model economy of Wieland (2000a).
Filatov and Unbenhauen (2004) use bi-criterial optimization to devise dual control policies.
Han, Lai, and Spivakovsky (2006) enhance one period cautionary myopic control with the
use of policy rollout, a Monte Carlo simulation based technique for the evaluation of the
performance of a given policy using only states actually visited in simulation. Sarris and
Athans (1973) propose two-step adaptive control that takes into account future adaptation
of conditional means but not the variance of the unknown parameters. If the underlying
distribution is not Gaussian, Alspach (1972) proposed mixture of normals approximation
within limited lookahead framework to obtain a solution scheme. Various advanced dy-
namic programming techniques could also be redirected for use in economic problems. The
techniques include temporal difference methods (Sutton, 1984), approximate and optimistic
policy iterations (Bertsekas and Tsitsiklis, 1996), Q-learning (Watkins, 1989), sequential
approximation in the state space (Bertsekas and Tsitsiklis, 1996), value iteration with state
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aggregation (Tsitsiklis and Van Roy, 1996), value iteration with representative states (Tsit-
siklis and Van Roy, 1996), Bellman error methods (Schweitzer and Seidman, 1985), approx-
imate linear programming (Trick and Zin, 1993, 1997), linear programming with constraint
sampling (de Farias and Van Roy, 2004), etc. Some results on the Bayesian control of
Markov chains are discussed in Kumar (1985) alongside more general exposé of stochastic
adaptive control ideas.

Most of work on active learning studies the single-agent case, but there are modest
literatures about multi-agent (game-theoretical) learning in both non-equilibrium setting
(Fudenberg and Levine, 1993; Fudenberg and Kreps, 1996; Dubei and Haimanko, 2004;
Jehiel and Samet, 2005) and in equilibrium (Bolton and Harris, 1999; Aghion, Bolton,
Harris, and Jullien, 1991; Bergemann and Välimäki, 1996; Dekel, Fudenberg, and Levine,
2004; Keller, Rady, and Cripps, 2005).

Non-Bayesian adaptive control that allows more flexibility in the design of control laws
has also been explored. See Kumar (1985) for an early survey.

15. Applications

The economic applications with passively or actively adaptive control and purposeful
experimentation are far too numerous to survey exhaustively. Some of the work is reviewed
in early review of Rausser (1978) and recent keynote address to the Society of Computational
Economics by Kendrick (2005). With some overlap with the above reviews, we will recount
most notable works.

Early applications of dual control include the work of Rausser and Freebairn (1974a,b)
on agricultural trade policy, Rothschild (1974a) on monopolistic pricing with unknown de-
mand, Chong and Cheng (1975) on pricing strategies for the introduction of a new product,
Rausser and Hochman (1978) in the context of commodity-marketing boards with possi-
bility of inventory accumulation, Pekelman and Tse (1980) on advertising. Along with
these applications, Abel (1975) examined small macroeconomic model for the purposes of
’monetarist-fiscalist’ debate, Kendrick (1979) explored a small scale macroeconomic model
with measurement error while Bertocchi (1993) built a theory of floating public debt issues
using ”subscription issues” when demand schedule for bonds is unknown. Bertocchi and
Spagat (1993) appraised the optimal monetary policy with experimentation when coeffi-
cient uncertainty is confined to the choice of the two possible values. Balvers and Cosimano
(1990) study the dynamics of price adjustment in the context of the active learning about
the demand schedule. Trefler (1993) considers monopolistic pricing and output decisions in
more general framework with endogenous demand information. Datta, Mirman, and Schlee
(2000) apply active learning to the model of retail clearance sales with signal dependence
and noiseless information. Yetman (2000) constructs a model of monetary policy with uncer-
tainty about the level of potential output and examines the relationship between credibility
and the optimal probing when planning horizon is finite (up to ten periods). He finds that
only for low levels of credibility or unrealistically large levels of uncertainty or volatility does
the optimal policy with probing diverge significantly from a policy that ignores learning,
and that the optimal amount of probing diminishes as credibility rises. Related paper where
unknown parameter is related to the credibility of the regime change in the private sector
inflation expectations is Tesfaselassie and Schaling (2007). The twist is the timing protocol
that makes inflationary expectations dependent on past policy decisions. The disinflation
under actively optimal policy is more than under cautionary policy but less than under
the certainty equivalence, irrespective of the initial level of inflation. Moscarini and Smith
(2001), in a continuous time setting of control of variance of a diffusion with uncertain
two-state mean, show monotonicity of optimal experimentation level with Bellman value
and beliefs when the model is interpreted in R&D context. Hong and Rady (2002) intro-
duce experimentation in an asset pricing model with uncertain supply of liquidity, where
strategic seller can infer about liquidity from past prices and trading volume. Cosimano,



16 SERGEI MOROZOV

Emmons, Lee, and Sheehan (2002) study the dynamics of loan and deposit rate adjustment
when large financial institutions actively learn about the demand for loans and the supply
of deposits. Marcoul and Weninger (2004) study dynamic fishing site choice when unknown
abundance is correlated across fishing sites and find empirically that mid-Atlantic surf clam
fishing vessel’s skippers follow site choice patterns that are consistent with a model of ratio-
nal search and information acquisition. Ellison, Sarno, and Vilmunen (2006) examine the
optimal active learning policy in an open-economy macro model and compare coordinated
and uncoordinated equilibria.

There is now also a solid strand of literature on structural estimation of models of learning
and experimentation, typically in the context of consumer choice. This line of research was
pioneered by Erdem and Keane (1996) on the panel of individual purchases of liquid laundry
detergents under certain homogeneity assumptions, including price sensitivity. As pointed
out by Osborne (2006), if this assumption is violated, the pricing dynamics following product
introductions would be attributed entirely to learning even though there could be no learning
in the underlying data generating process. It is then important to match features of the
data with identifying assumptions about sources of heterogeneity and differential learning.
Crawford and Shum (2005) and Ackerberg (2003) explore richer sources of heterogeneity
while not accounting for any types of dynamics that are not learning. Osborne (2006)
develops a combined structural framework with consumer learning, switching costs and
heterogeneity.

16. Concluding Remarks

Despite much work already done, there’s much more to be done both in algorithm de-
velopment and practical applications. Kumar (1985) lamented that efficient computational
methods or analytic solutions to new problems are still needed; that in the area of dual
control of linear quadratic Gaussian systems, one needs approximations for which rigorous
bounds on the quality of the approximations are available as well as studies of rates of
convergence. These issues are still problematic today. In terms of economic applications,
especially macroeconomic policy analysis and aggregate demand management under the
rational expectations, the area that is dear to us, we would argue that it is particularly im-
portant to take account of forward-looking variables such as inflationary expectations, term
premia, etc. Unfortunately, combination of active learning with forward-looking variables
is very difficult to study as even rudimentary macro models with forward-looking variables
proliferate state variables all too easily. Furthermore, estimation of models with forward-
looking variables requires that policy rule is pre-specified. Resolution of this simultaneity via
iterative guess-verify approach forces one to re-optimize dynamic program multiple times.
To our knowledge, no attempt has been made in the literature yet to solve this important
problem.
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