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Talk Outline

Exploring Bayesian Active Learning of Drifting Coefficient Regressions
» Setup

» Bayesian active learning control: what, why and how
» Drifting parameter models

» Contribution

» Explore quality of larger variety of suboptimal solutions
» New bounds for actively optimal solution
» New features of actively optimal solution

» Conclusions and related work



Bayesian Active Learning Control
What is Bayesian Active Learning Control?
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Stabilizing discounted deviations from desired time path
Imperfect information setting (model uncertainty)
Bayesian updating of model uncertainties

Active Learning control is a compromise between stabilization
now and experimentation in order to learn to stabilize better
in the future

Information accumulation is endogenous and factors in
decision making



Bayesian Active Learning Control
Why Study Bayesian Active Learning Control?

» Consumption smoothing
» Macroeconomic stabilization under model uncertainty

» Monetary and fiscal policies under model uncertainty
Exchange rate targeting
Discovery of good policies
Measurement of trade-off possibilities among competing aims
Evaluation of policy proposals
Appraisal of historical policies
Selection of sets of policy instruments based on their
effectiveness
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Resource control

>
» Monopolistic pricing with unknown demand
» New product introductions

>

Price discovery in financial asset pricing



Bayesian Active Learning Control
How to Study Bayesian Active Learning Control?

» Solve imperfect information problem by dynamic programming
— Cursed by Curse of Dimensionality

» Find good approximating suboptimal solution by opening
Pandora box of bounded rationality

» Study suboptimal solutions in order to:

» estimate the size of experimentation component of policy in
terms of policy, loss function and outcomes

> appreciate departure into bounded rationality

» provide good starting points for active learning optimal
algorithms

» provide heuristics for cases where active optimal policy is too
hard to find



Drifting Parameter Models

Nine out of ten people who change their minds are wrong
the second time too.
—Anonymous

» Encapsulates idea of continuously adapting economic
environment

» Captures lack of consensus about stability of data generating
process over time
» Empirical justifications:
» Canova (2006): lack of posterior tightening in the small-scale
New Keynesian model of US economy
» Cogley-Sargent (2001): departures from time-invariance in the
US inflation dynamics
> etc. ...



Control of Drifting Coefficient Regression
min_ Eg [i st ((xt — x*)2 + w(u — u*)z):|

{ue} Sy

subject to

observed state: x; = a + Beup + yxp—1 + €t
random coefficients: B¢ = Br_1 + Nt
2
I:Et:| ~ N 0, Te 02 R
Nt 0 oy
o,y —  known

Bayesian Learning Dynamics (Kalman filtering): B¢ ~ N (ut, Xt)
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Variance updating is deterministic

Decreasing variance if 0'37 = 0, so that learning would converge
Experimentation never ceases if a‘% >0

First solved in Beck and Wieland (2002) by numerical dynamic programming
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Our approach is a refinement



Actively Optimal Control

Dynamic Programming Formulation
’
Information state Z = { (l"t+1\ta zt+1\t) }

P> Extended state S = X X T - R3
> Bayesian updating induces nonlinear mapping on information state B(+, x;_1,ut) : S — S
> Stationary Bellman Equation for continuation value (cost-to-go)
vis) = min {L(St, i)
{ueg1}
+ 5/ V(B(St, & + Bri1urs1 + ¥xe + €r41, Uri1)) P(5t+1\St)Q(€r+1)d5t+1d€r+1}
=: T[VI(St),
where L(St, ug11) is expected one-period loss
2 2
L(St, ury1) = / ((a + Ber1uer1 + vxe + €1 — x7) + wluppr — u”) ) P(Be+11St)a(€ers1)dBey1deri,
and T[V] is Bellman functional operator
P T is a contraction mapping, value function iterations converge (Kiefer-Nyarko, 1989)
P> Value function may have kinks and policy function may have discontinuities
> Policy iteration used to reduce computing time
> Adaptive space discretization - finer mesh near policy discontinuities or areas of high curvature



Actively Optimal Control

Useful Analytic Bounds

P There are policies whose Q-factors could be computed analytically

> Do-nothing policy: u = 0

V(%) =

(o + xt 7)(*)2 — oy ((X*)2 —a? — x* (2 7X*)+’yxt2(1+’y) — 2x(x* — a+’yx*))

(1= 81— 43)(1 — 123)
,7352 (xt—x*)z o2 w(u*)z

A== 01— 728 G=8)1 -8  1-s

P Pseudo-myopic policy
A 0
ub) = argmin E¢ {L(Xt+1: upy1) + 0V (Xr+1)} .

has analytic expression for thm(xt, Kty Zt‘t) as well

> Analytic Q-factors bound actively optimal cost-to-go but can be translated into policy space
o . 0
Ee (L1 u740)| < V< min { V) 0x), V™ (xe, e, o) }

Bounds are somewhat loose, especially in extreme regions
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Useful to prove validity of using bounded state-space algorithm with reflective barriers to approximate
solution on the unbounded domain

P> Useful to provide bounds to minimization step and for initial guesses



Actively Optimal Dual Control

Properties

11E
T

Figure: 1 Actively adaptive optimal control. Parameters: @ = w = u* =0, v = 0.9, § = 0.75, x* =1,
02 =10, 02 = 0.0L

> Aggressive experimentation in the vicinity of x™*

P Possible discontinuity at x* due to nonconvexity



Certainty Equivalent Control

Dynamic Programming Formulation

P> Solves infinite horizon LQG problem with constant coefficients, i.e. treating B;41 as known constant
B4l = Bet1)e = Bt

P Bellman equation

. - 2 2
V(xe) = {JT"“ y {H‘At (o + Bepruepr +yxe + €rp1 — X*) + w(upp — u™)
t+1

+ 0B V(e + Beirurir + yxe + 6:+1)}

has a solution that is quadratic in x¢, VCE (xt) = Axt2 +2Bxt + C

P CE Policy is linear in x;

*

—a)+wu* —SuB — SautA
u? + w + 6Au?

JE _ pey(l + 5A) N pe(x
= - t
T 2w+ eau?

P> Coefficient A > 0 solves univariate version of algebraic Riccati equation
2 2
o w(1+5A)—A(,ut(1+6A)+w) =0

w (Y(peu™ + o) + peySAu™ — yx*)

B= 2 2
pi +w+ SAu; — yow




Certainty Equivalent Control

Properties

Figure: 2 Certainty equivalent control. Parameters: o« = w = u* =0, v = 0.9,

> Aggressive experimentation in the vicinity of x™*

> w=0 implies instantaneous adjustment to target IEtCE(Xt+1) = x*
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Anticipated Utility Control
Dynamic Programming Formulation

P> Solves infinite horizon LQG problem with constant but random coefficients while ignoring future learning
(Bayesian linear regulator)

P Bellman equation

V(xt) = J':J'rq {Et (@ + Bryrtert + vxe + ers1 — x7) + wlugpr — u™)?

+0E: V(e + Brpruer1 + vxe + €e41) ),

Bey1 ~ N (uwl‘t, Xt‘t + 037), has a solution that is quadratic in x¢, VAE(X,:) = Axt2 +2Bx; + C

P> AU Policy is linear in x;

AU (1 + 6A)ut (x* — a(l + §A) — §B)ut + wu™
(Tt + 02 + pd)(1 +5A) + w

u = — Xt
T (St o2 + D)L+ 6A) +w

P> Coefficient A solves univariate version of algebraic Riccati equation

2 2 2
- 1+5A
- Z ”‘(2 ) +2(1+54)= A
(Z¢ + oF + pi)(1+6A) + w

Yt (1+8A) (e (x* — a(148A)—8B)+wu™)

P B solves 2
(Zt+on +1g)(1+5A)+w

+v(a — x*)+davyA=(1—6v)B



Anticipated Utility Control

Properties

i
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Figure: 3 Anticipated utility control. Parameters: o« = w = u* =0, v = 0.9, § = 0.75, x* =1, a'i =
o2 =0.0L

> Policy smoothing due to caution

1.0,



Markov Jump Linear Quadratic Control

Formulation

P> Solves infinite horizon LQG problem with random coefficients that follow unobserved finite state Markov
chain

» MJLQ state equation
Xer1 = As(e1) Xe + Bo(ea1) Urr1 + Cy(eq1) €415
s(t+1) € {1,..., 5}7- Pt+1,j 'Plf(s(f‘*' 1) =j). pey1 = (Pe41,15 - - - apt+1,5)/ =P'py,
Pj = Pr{s(t+1) =j|s(t) =i}, i,j=1,...,S
» MJLQ Bellman equation

V(Xe, pes1) = X; W(pry1)Xe + w(per1) =

= &nin {Xt, QXt + U;+1 RU¢t1 + 6Bt V(Xeq1, Pr+1)}
b1

= min {)({QXt + Ul 1 RU¢ 11
Ury1

+4 Z Pt+1Jij (th+1,k W(Pt+2)xt+1,k + W(Pt+2)) },
ik



Markov Jump Linear Quadratic Control

Solution
> 1
Utt1 = —G(pe+1) ™ K(pes1)Xe,

where

G(pes1) = R+ 8D per1, ;P BrW(P' pey1)By,
Jik

K(pt+1) = 8 ZPtJrl,ijkBA: W(P’le)Ak,
ik

P> Matrix W(p) solves Riccati equation

W(pei1) = Q+ 8D per1 jPik A W(P pri1)Ax — K(pe+1) G (per1) " K(pey1)-
Jik

P Riccati equation can be solved by receding control

P set distant horizon with terminal cost-to-go from the problem with observed regimes

> iterate backwards to obtain W(p¢y1)

P expand horizon until convergence

P observed regime solution satisfies system of coupled Riccati equations, which could be uncoupled
by change of variables

>

uncoupled Riccati equations could be solved by doubling algorithm (doubleo.m and olrp.m)

W (p¢+1) for the entire simplex of probabilities requires function of approximation methods



Markov Jump Linear Quadratic Control
Approximating Continuous Drift by Markov Jump Linear Quadratic Model

P Partition the support of N(uﬂl‘t, ZH”,:) distribution into S segments of equal probability, and define S
states (regimes) as the expected values of respective truncated normal distributions over each segment.

P> Define transition probability matrix by discretizing the probability distribution of 3; > conditional on

Bey1 = B foreach k =1,...,5.
P Set X; = (Xt _1 x*)' Ut = ut,
A — 1 0
k= \a+ (v — D)x* + Beu™  ~
0
Be=(35,).
0
o (%)
0 (vz(X*)z (= xR+ 29(a — X (@R 4 0? AP e — )
Vx4 y(a = x¥) 7 '

N ((a + (v — 1)x*) — wu*) (stzl Pj,t+lﬁj)>'
V71 P41
R=w+ Ejs:l Pj,t+15j2<



Markov Jump Linear Quadratic Control

Properties

i
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Figure: 4 MJLQ(3) control. Parameters: @ = w = u* =0, v = 0.9, § = 0.75, x* =1, oz = 1.0,
o2 =0.0L

| 4 Policy smoothing due to caution

P Similar to anticipated utility



Limited Lookahead Control
Definition

n-period lookahead policy ui(:% is part of the solution to the following finite-horizon problem:

2
min {Et { (o + Beprtepr + vxe + €41 — x*) ]
Up4loe o Utdntl

n
+ > 6K [(Xt+7+l —x*)

=1

n
2
Utply ooy Ur+7] +w E 67 (utpry1 — ™) }
=0

where

2
E; [(Xt+r+1 -x")

Upgls - v ey ’-’t+‘r:|

17,y7-+1 . 2 T 17WT+1 . T
=la=—— +7""x —x* +Z’Y fol 2 (a4 e — X" NtZ’YS“t+T+1—s

1—v - 1—v -

s=0 s=0

T 2
+ Et [ (Z ’Ysﬂt+r+1—sur+r+1—s> Upgly -y Ut+7] .

s=0

P We need to compute all cross-moments E; (ﬂt+jﬂ:+k‘“t+1: ey ut+7) forallj,k=1,...,7+1

unless v = 0.

Use fixed point Kalman smoother with auxiliary constant state to compute all cross-covariances

vy

Solving for n-period limited lookahead control is equivalent to solving polynomial equation of degree 4n+ 1



One-Period Lookahead Control

Formulation

. 2 2
min Et{ (o + Bepruerr + vxe + €41 — x7)° + w(ugpr — u™)
Up41,Ut42

+ 5[ (a + Beyauesa + yxep1 + €2 — x7)% + w(ueyn — u*)ﬂ }

2 2 2
EeBryn = witZetoy,

o [ 42 2

Et [ﬂt+1|ut+1] = wp +Xepa(ue),

2
Ky + e (ueg),

Et [Bt41Bts2|uts1]

Ee [ﬂz2+2 | ”t+1]

2 2
Bt + T (i) + 05,

1-period lookahead loss

P> Non-convexities can develop similar to "unlimited” lookahead



One-Period Lookahead Control

Properties

Figure: 5 One-period lookahead control. Parameters: @ = w = u* =0, v = 0.9, § = 0.75, x* =1,

02 = 1.0, 02 = 0.0L

> Policy smoothing due to caution

> Slightly more nonlinear




Passively Optimal Control

Dynamic Programming Formulation

P> Solves infinite horizon LQG problem with random coefficients that follow random walk but ignoring future
learning

P Bellman equation
V(xt, Hep1|es zt+1\t) = min {L(th Beyi)e Zesl)er Upy1)
{ueg1}

+6 // v (D‘ F Hep2ete+1 X F €041 Beg2rs zt+2\t)

X P(Nr+2\r)Q(€t+1)dNr+2\rd€t+1}»

P Reduces to anticipated utility if a% =0

P Double integration makes solution more difficult to compute

P Unbounded drift of predictive variance in the absence of new observations requires receding finite absorbing
boundary until no solution change



Passively Optimal Control

Properties

Figure: 6 Passively adaptive optimal control. Parameters: o = w = u* =0, v = 0.9, § = 0.75, x* =1,
02 =1.0, 0% =0.01,

> Policy smoothing due to caution



Gradualism
a little stodginess at the central bank is entirely appropriate (A. Blinder, 1998)

—— Actively Optimal —— Actively Optimal
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—F —— Passively Optim;
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Figu re: 7 Expected target state under alternative policies. State coordinates: p1; = —0.5, £ = 0.64.

Parameter values: o = 0.1, v = 0.9, § = 0.75, x* =1, u* =0, 02 = o2 = 0.04.

> Only CE policy with w = 0 implies one-step adjustment to target (in expectation)



Policy Function Comparison

R

w =0 w = 1.6;

Figure: 8 Policy functions under alternative policies. State coordinates for top plots: p; = —0.5, X = 0.64.
State coordinates for bottom plots: gy = —0.5, x = 0.5. Parameter values: o = 0.1, v = 0.9, § = 0.75,

x* =1, u* =0, a'z = 0'3, = 0.04.

P> Differences among policies are most pronounced along parameter uncertainty dimension



Comparison of Expected Cost-to-go Functions

Optimal Q-factors take account of future learning under given policy rule, unlike
objective functions of suboptimal policies

Figu re: 9 Actively adaptive value function under alternative policies. State coordinates for top plots:
pt = —0.5, ¥+ = 0.64. State coordinates for bottom plots: p = —0.5, xx = 0.5. Parameter values: o = 0.1,
7=098=075x" =1 u* =0 02 =02 =0.04

P> Active advantage grows with parameter uncertainty



Optimal Q-factor of Anticipated Utility Policy
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Figure: 10. Volumetric plot of V*(S, uAV) — vAY(S, uAY). Parameters: o = 0.1, v = 0.9, § = 0.75,
w=16x" =1 u* =002 =02 =0.04

> v (s, uY) — vAY(S, 1Y) could be negative or positive; using VAY (S, 1Y) could distort inference of
the benefit to intentional experimentation



Expected State Dynamics

8 T T
——— Actively Optimal
—o&— One-—period Lookahead 8
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7H MILQ(3) b
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Figu re: 11 Expected dynamics of extended state under different policies. Parameter values: o = 0.1,
~v=0.9,6=0.75 02 = 1.0, a% =0.04, w = 1.0, x* = 1.0, u* = 0. Mean belief: 1y = 0.5. Starting values:
xt =0,X =4

> Actively optimal and certainty equivalent policies induce most learning via intentional and accidental
experimentation



Simulated Controls

Actively Optimal Passively Optimal

o 20 40 60 80 100 o 20 40 60 80 100

Anticipated Utility Certainty Equivalence

Figu re: 12 Simulated multiple time-series of control under different policies. Parameter values: o« = —0.05,
7 =0.9,8=075 02 =0.01, 02 = 0.0001, w = 1.0, x* = 1.0, u* = 0. Starting values: xp = 0, pg = —0.1,

Y = 0.04. True initial slope: 31 = 0.5. Number of time periods: T = 100. Number of simulations: NMC = 400.

> Only actively optimal policy does not get stuck at uy = 0



Simulated Physical States

Actively Optimal Passively Optimal

40 60

Certainty Equivalence

Figu re: 13 Simulated multiple time-series of of target state x; under different policies. Parameter values:
= —0.05 v = 0.9, § = 0.75, 2 = 0.01, a% =0.0001, w = 1.0, x* = 1.0, u™ = 0. Starting values: xp = 0,

po = —0.1, Xt = 0.04. True initial slope: 31 = 0.5. Number of time periods: T = 100. Number of simulations:
NMC = 400.

> Only actively optimal policy does not bifurcate into 2 basins of attraction
| One-period lookahead escapes the two basins most frequently
P Anticipated utility and MJLQ(3) are very similar



Simulated Mean Beliefs
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Figu re: 14. Evolving distribution of simulated time-series of mean belief 11+ under different policies.
Parameter values: o = —0.05, v = 0.9, § = 0.75, 02 = 0.01, 02 = 0.0001, w = 1.0, x* = 1.0, u™ = 0.
Starting values: xg = 0, g = —0.1, X; = 0.04. True initial slope: 31 = 0.5. Number of time periods: T = 100.
Number of simulations: NMC = 400.

> Actively optimal policy quickly zooms in into the neighborhood of actual slope realizations

> Actively optimal policy realizations are the tightest band



Simulated Belief Variances

Actively Optimal Passively Optimal
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Figu re: 15 Simulated multiple time-series of variance of belief X under different policies. Parameter values:
= —0.05, v = 0.9, § = 0.75, 2 = 0.01, a% =0.0001, w = 1.0, x* = 1.0, u* = 0. Starting values: xg = 0,
po = —0.1, Xt = 0.04. True initial slope: 31 = 0.5. Number of time periods: T = 100. Number of simulations:
NMC = 400.

> Actively optimal policy is the only one consistently reducing uncertainty

> Learning cannot converge to the truth if 0‘% >0



Simulated Regrets

Regret function

Ct = zt: 57 ((XT - ><*)2 + w(ur — u*)z) .
=0
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Figu re: 16 Simulated multiple time-series of regret function C; under different policies. Parameter values:

a = —0.05 v =0.9, 6§ =0.75, 0‘3 =0.01, 0'37 =0.0001, w = 1.0, x* = 1.0, u™ = 0. Starting values: xy = 0,
po = —0.1, ¥y = 0.04. True initial slope: 37 = 0.5. Number of time periods: T = 100. Number of simulations:
NMC = 400.

> Actively optimal policy dominates except in unluckiest cases
> Passively optimal is second best

| 2 Certainty equivalent outcome is the worst



Concluding Remarks

» Six solutions/approximations to Bayesian dual control of drifting coefficient

regression

certainty equivalent policy

anticipated utility control

Markov jump linear quadratic approximation (semi-new!)
passively optimal policy (new!)

one-period limited lookahead

actively optimal dual policy

VYVYYVYY

» Common features

»  gradualism

» Distinct features
> actively optimal policy could be different, especially in the regions of high uncertainty
P actively optimal policy guards against dismal outcomes
P active experimentation eliminates escape dynamics dual basins of attraction
P actively optimal and certainty equivalent policy induce fastest learning
» Anticipated utility and MJLQ(3) are very close, but the former is much easier to
compute
> V(S uAY) — VAY(S, uAY) could be negative or positive; using VAU(S, uAY)
could distort inference of the benefit to intentional experimentation



Work in Progress

>

New suboptimal policies trading limited lookahead for active prediction of future

posterior distributions
> Multi-step prediction of posterior variance
P Linearization of filtering distributions in augmented state formulation (EKF, Kendrick (2002))
P Gaussianization of future posteriors in augmented state formulation (UKF), needed if ~y is unknown

Similar models (up to 6 state variables)

Xt+1 = « + Bupy1 + €441, «, B unknown (Wieland (2000))

Xt41 = a + Bupyy + vx¢ + €441, B,y unknown

Xt+1 = o + Brupr1 + Bour + Yxt + €441, B1, B2 unknown

Xe+1 = @ + Bry1Uet1 + Ver1Xe + €e41, Be, e latent: Brig = B + mev1, Yer1 = e + Ve
Xe41 = @ + Brug r41 + Bauz 41 + €e41, B1, B2 unknown

vVYVYY

Additional models

> Latent volatility models
P Multivariate target state and cross-equation restrictions

Numerics and computation

P GPU accelerated computation
> Adaptive Smolyak grids

Theoretical Work

»  Convergence proofs and bounds
»  Expanding uncertainty dimensions

Applications



	Bayesian Active Learning Control
	Actively Optimal Control
	Suboptimal Control
	Anticipated Utility Control
	Markov Jump Linear Quadratic Control
	Limited Lookahead Control
	Passively Optimal Control
	Comparing Solutions
	Simulations
	Conclusion
	Work in Progress

