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Figure 40: Simulated single time-series of target state xt under different policies. Parame-
ter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0, x∗ = 1.0, u∗ = 0.

Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope: β1 = 0.5. Number of
time periods: T = 100.

the latent coefficient process closer to the truth. Subsequently, the greater knowledge of
policy effectiveness is exploited to achieve low regret.

Scatter plots in figures 60 and 61 supplement the evidence for the clear superiority of
actively optimal policy by showing that the advantage is uniform – if the shock sequence
is fortuitous in that it leads to small cumulative loss under any of the suboptimal poli-
cies, the regret under actively optimal policy is even smaller. To reconcile this evidence
with only a short distance between expected cost-to-go functions under alternative policies
along the state space slices we have shown earlier, we conjecture that the actively optimal
policy is robust against really unfortunate but rare draws of stochastic disturbances that
may thrust the state into the regions of larger differences among cost-to-go functions and
correspondingly larger policy differences. Similar idea is expressed in Amman and Kendrick
(1994).

10.7. Costs of Computation. One of the important contentions of the approximate dual
control methods is their alleged computational superiority over direct numerical dynamic
programming. Here we briefly comment on our experiences with the drifting coefficient
regression model with this regard.

Table 1 shows CPU time required to evaluate a given policy rule on a grid of a given size.
Here we assume that value iteration algorithm for actively optimal and passively optimal
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Figure 41: Evolving distribution of simulated time-series of target state xt under different
policies. Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0,

x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope:
β1 = 0.5. Number of time periods: T = 100. Number of simulations: NMC = 400.

dynamic programs is executed on a 100 × 100 × 100 grid with 100-point univariate Gauss-
Hermite quadrature for the former and tensor product 40× 40-point Gauss-Hermite quad-
rature for the latter. The CPU timings were obtained on Intel c© Xeon 5160 CPU. Dynamic
programming calculations were further accelerated by using parallel dynamic programming
using four processors. The timings also account for the fact that certainty equivalent, an-
ticipated utility and MJLQ(3) policies are linear in xt and hence only tabulating the slope
and the intercept is necessary in order to tabulate the policy on the entire three-dimensional
grid. In addition, certainty equivalent policy is independent of Σ which reduces the number
of evaluations even further. We also assume that quartet of suboptimal policies exploits
parallel computation capabilities (four threads) comparable to those available for dynamic
programming solutions. For the grids larger than 100× 100× 100 we assumed that actively
optimal and passively optimal policies are evaluated by linear interpolation. The same is
assumed for all other policies for which interpolation is faster than direct evaluation – one-
period lookahead and MJLQ(3). The point here is that numerical dynamic programming
involves fixed computational costs, while various direct approximations - mostly variable
costs. Certainty equivalent control is apparently superior numerically to all the other ap-
proaches, yet we have seen that following that type of policy could lead the decision-maker
seriously astray. Anticipated utility occupies the middle ground with moderately close ap-
proximation which is cheap to compute. Passively optimal policy is the hardest due to
two-dimensional integration involved. Among the quartet of approximations studied here
MJLQ policy may be at disadvantage – it’s very close to AU unless the number of regimes is
large, and if it is required to be evaluated at many points in state space (e.g. in the course
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Figure 42: Pairwise comparisons of single simulated time-series of target state xt under
different policies. Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001,

ω = 1.0, x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial
slope: β1 = 0.5. Number of time periods: T = 100.

of simulation), it may require more time than optimal policy. I conjecture that in problems
with more dimensions, especially dimensions of the information state, MJLQ-type control
will regain its competitiveness.

An additional aspect to computational cost is its type. Large-scale dynamic program-
ming approaches, especially in the presence of hard-to-quantify discontinuities are not only
compute-time bound but also memory limited.

We conclude that while the computational advantage of any given policy is specific to the
problem formulation and the desired degree of approximation, the dynamic programming
approach need not be summarily discarded.

11. Conclusion

In this paper, we study the problem of the infinite-horizon dual Bayesian control of
a regression with drifting sensitivity to the control input, a setup of Beck and Wieland
(2002). The focus of the study was two-fold, to expand the set of approximate solutions to
include those that take account of drift in the policy effectiveness and to explore the quality
of approximation in more detail.

The set of candidate approximations included five policies in addition to the actively
optimal policy itself. One approximation, the certainty equivalent policy, ignores param-
eter uncertainty altogether, including the coefficient drift. It displays the largest amount
of accidental experimentation and yet could be seriously lead adrift. The other class of



46 SERGEI MOROZOV

−2 0 2
−2

0

2
P

O

−2 0 2
−2

0

2

LL
(1

)

−2 0 2
−2

0

2

−2 0 2
−2

0

2

M
JL

Q
(3

)

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

A
U

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

−2 0 2
−2

0

2

AO

C
E

−2 0 2
−2

0

2

PO
−2 0 2

−2

0

2

LL(1)
−2 0 2

−2

0

2

MJLQ(3)
−2 0 2

−2

0

2

AU

Figure 43: Pairwise comparisons of multiple simulated time-series of target state xt under
different policies. Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001,

ω = 1.0, x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial
slope: β1 = 0.5. Number of time periods: T = 100. Number of simulations: NMC = 400.

Grid Size
Policy 1 100× 100× 100 500× 500× 500

Actively Optimal 3.336e+2 3.336e+2 4.878e+3
Passively Optimal 2.596e+3 2.596e+3 7.140e+3

One-period Lookahead 5.667e-3 1.417e+3 5.962e+3
Certainty Equivalent 4.425e-6 1.107e-4 5.531e-4

Anticipated Utility 4.505e-6 1.126e-2 2.816e-1
MJLQ(3) 9.436e-2 2.359e+2 5.897e+3

Table 1: CPU time, T , in seconds, required to evaluate given policy on the grid. Parameter
configuration: α = 0.1, γ = 0.9, δ = 0.75, ω = 1, σ2

ε = 1.0, σ2
η = 0.01, x∗ = 1, u∗ = 0.

Grid: non-uniform product grid on (−2, 2) × (−3, 3) × (0.001, 4). Dynamic programming
algorithms implemented using combination of value and policy iterations.
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Figure 44: Simulated multiple time-series of mean belief µt under different policies. Pa-
rameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0, x∗ = 1.0,

u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope: β1 = 0.5.
Number of time periods: T = 100. Number of simulations: NMC = 400.

approximations is represented by the one-period lookahead. This is an actively adaptive
policy that acknowledges both the parameter uncertainty and the coefficient drift but is
semi-myopic in that it only solves two-period dynamic program, ignoring the costs accru-
ing further into the future. Even with relatively low discount factor, one-period lookahead
policy could induce outcomes that do not resemble those of optimal policy and which may
not be shared by other policies. For example, simulated one-period lookahead controls are
attracted by the no-intervention policy (ut = 0) nearly 50% of the time, while at the same
time the bifurcation of the state paths into two branches is least pronounced. The third class
of approximations is comprised of the three policies that take parameter uncertainty into
consideration but eschew the active experimentation motive. They differ in how seriously
they treat the coefficient drift. Anticipated utility approach ignores the drift, MJLQ policy
treats coefficient drift as if it follows finite state Markov chain, while passively optimal policy
recognizes that the support of the drift is continuous.

Our calculations both detect common features and discern contrasting elements among
the six policy rules. On the one hand, casual inspection of the optimal cost-to-go function
and optimal Q-factors of the other five policies indicate that only the certainty equivalent
policy rule incurs significantly larger expected cost, with the expected loss of the four re-
maining suboptimal policies being close to that under the actively optimal policy, at least
in the ”central” regions in the state space. On the other hand, the actively optimal pol-
icy consistently outperforms all of the alternatives by a noticeable margin. The simulation
advantage can be traced back to the remarkable bifurcation of the simulated state dynam-
ics into two distinct branches under all suboptimal policies but not under actively optimal
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Figure 45: Simulated single time-series of mean belief µt under different policies. Parame-
ter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0, x∗ = 1.0, u∗ = 0.

Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope: β1 = 0.5. Number of
time periods: T = 100.

solution. Five suboptimal approximations share a kind of escape-like dynamics between
the two basins of attraction, not unlike those observed by Hughes and Jacobs (1974) and
systematically studied in Cho, Williams, and Sargent (2002); Sargent and Williams (2005)
among others. As a result, mean beliefs under the actively optimal policy move rapidly
towards the unobserved true values for practically all simulated paths, while under alterna-
tives the probability of traipsing far away from true values remains noteworthy. Potential
lack of tightening of the posterior belief (or even gradual widening) is then possible. Because
the one-period lookahead policy displays the smallest amount of branching and is the only
active but suboptimal policy, we can possibly attribute elimination of two distinct basins
of attraction to the active experimentation. Our results also indicate that MJLQ control
is a modest improvement over anticipated utility policy in terms of reaching the optimal
performance index in the class of passively adaptive policies. In simulation, they are very
hard to distinguish, along practically every dimension of interest, at least for the moderate
number of regimes, while anticipated utility is much easier to compute. Both anticipated
utility and MJLQ controls are not very different from the optimal passively adaptive policy.
Moreover, the benefit to the active experimentation over most passively adaptive policies
is relatively small. On the other hand, more sophisticated learning techniques and prob-
ing seem important for reducing the likelihood of large mistakes and escape-like dynamics.
Only the actively optimal policy appears robust to unlikely unlucky draws of stochastic
disturbances.
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Figure 46: Evolving distribution of simulated time-series of mean belief µt under different
policies. Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0,

x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope:
β1 = 0.5. Number of time periods: T = 100. Number of simulations: NMC = 400.

Along the way, we found that there’s no definitive relationship between optimal Q-factor
of anticipated utility policy and the cost-to-go function optimized by the anticipated utility
control. Comparison of the latter with the optimal cost-to-go function can therefore dis-
tort the evaluation of the benefit accruing to the active experimentation. In light of this
finding, we suggest that results such as Cogley, Colacito, and Sargent (2007) on the relative
insignificance of the intentional experimentation component of policy be interpreted with
caution.

In addition to being of interest in their own right as reasonably rational decision rules
and as relative to the optimal dual policy, suboptimal policies serves as good starting points
for more computationally demanding actively adaptive solutions. Indeed, using the value of
the myopic policy instead of the zero continuation value eliminates one iteration from the
standard value iteration dynamic programming algorithm.

Whereas our preliminary findings are not comprehensive, they suggest that the role of
probing and taking account of future dynamic parameter uncertainty is not so much in
the reduction of expected stream of losses, but guarding against truly dismal outcomes.
If my results remain valid in more realistic and empirically relevant settings, the design
of optimal economic policies in general and monetary policy in particular may shift its
emphasis. Analysis of the benefits to the experimentation and adaptive learning in broader
settings is a topic of on-going research.
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Figure 47: Pairwise comparisons of single simulated time-series of mean belief µt under
different policies. Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001,

ω = 1.0, x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial
slope: β1 = 0.5. Number of time periods: T = 100.

Appendix A. Details of Computation

Actively optimal and passively optimal policies and cost-to-go functions are represented
by means of linear interpolation on the non-uniform tensor product grid in the state space.
The non-uniform grid is designed to place grid-points more densely in the areas of high
curvature, namely in the vicinity of x = x∗ and µ = 0. The grid is uniform along Σ di-
mension. Although, in principle, the state space is unbounded, we restricted our attention
to the three-dimensional cube. The boundaries were chosen via experimentation to ensure
that high curvature regions are completely covered and that all simulated sequences origi-
nating sufficiently deep inside the cube remain there for the entire time span of a simulation.
Once the boundaries were chosen we used 200 points along each dimension for the actively
optimal dynamic program and 100× 64× 64 for the passively optimal dynamic program.14

14The tensor product grid was necessitated by known potential for non-convexities of the cost-to-go
function with respect to the policy variable, which imply non-smooth shape of the optimal cost-to-function
with respect to the state variables and, hence, discontinuities of the policy function. These difficulties
precludes use of more efficient ways to combat the curse of dimensionality such as Smolyak sparse grid
algorithm (Krueger and Kubler, 2004) or projection methods (Judd, 1998) as these rely heavily on function
continuity. Adaptive Smolyak sparse grid methods that offer heuristics designed to concentrate most of the
points in the directions that have the steepest gradient or have discontinuities have been proposed recently
(Gerstner and Griebel, 1998; Novak, Ritter, Schmitt, and Steinbauer, 1999; Hegland, 2001; Bungartz and
Dirnsorfer, 2003; Klimke and Wohlmuth, 2005). Application of these methods to imperfect information
dynamic programs of higher dimension is a subject of future research.
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Figure 48: Pairwise comparisons of multiple simulated time-series of mean belief µt under
different policies. Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001,

ω = 1.0, x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial
slope: β1 = 0.5. Number of time periods: T = 100. Number of simulations: NMC = 400.

Notice also that the optimal value function in the dynamic program with passive learning
is non-stationary with respect to the variance of beliefs which drifts to infinity. Receding
variance boundary (by analogy with receding horizon control) was used until the solution
was no dependent on the variance boundary within 10e− 3 relative error.

The computation of actively optimal policy is done via the combination of value and
policy iterations. Unlike the standard policy iteration where a single policy improvement
step (single value iteration) is alternated with a single policy evaluation step (by performing
policy iterations to convergence), we use multiple policy improvement steps to speed up
convergence. Preliminary experimentation has indicated that it is best in terms of comput-
ing time to use four policy improvement steps per one policy evaluation when δ = 0.75.
To further accelerate convergence we tried the midpoint of McQueen-Porteus error bounds
(Bertsekas, 2001; Rust, 1996) as a better next guess for the value function. The accelera-
tion was not successful and consequently was abandoned. During the minimization step of
the actively optimal and passively optimal dynamic programs we used Fortran subroutine
VD04AD from HSL Archive (formerly Harwell Subroutine Library), see HSL (2002). VD04AD,
originally due to M.J.D. Powell, finds a minimum of a smooth function of a single variable
using safeguarded quadratic interpolation with no attempt being made to avoid local min-
ima which may not be global minimum. Due to the local nature of optimization using good
starting values is important to locate the correct minimum and to accelerate performance.
Once we ascertained that anticipated utility policy closely mimic the two optimal policies,
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Figure 49: Simulated multiple time-series of variance of belief Σt under different policies.
Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0, x∗ = 1.0,

u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope: β1 = 0.5.
Number of time periods: T = 100. Number of simulations: NMC = 400.

we used these as intelligent starting points for the minimization procedure on the right hand
side of Bellman equation. In addition, we used ”hot start” whenever possible. Thus, explo-
ration of parametric dependence of the optimal policies was sped up by using as a starting
guess the value of the policy corresponding to the nearby parameter value.

Gauss-Hermite quadrature with 100 nodes was used to evaluate the expectation of the
value function on the right hand side of the Bellman equation. For the passively optimal
problem that involves double integration we used tensor product integration with 25 nodes
along each dimension. Obviously, the integration methods specifically geared towards double
integration against bivariate Gaussian density would be more efficient numerically.

Finally, we parallelized iterative sweeps of the state-space grid during the value and policy
iterations for use with multi-threaded computer hardware. This was done with OpenMP
directives for Fortran (Chandra, Menon, Dagum, and Kohr, 2000). We found that the
performance scaling with the number of parallel processors (up to four CPUs) was fairly
good. The code for the two dynamic program was implemented in Fortran-90.

Calculation of the optimal Q-factors of the various alternative policies used similar dy-
namic programming infrastructure in terms of functional approximation, parallelization and
numerical integration but only using the policy iteration steps.



LIMITS OF PASSIVE LEARNING 53

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Σ
t

 

 
Actively Optimal
Passively Optimal
One−period Lookahead
MJLQ(3)
AU
CE

Figure 50: Simulated single time-series of variance of belief Σt under different policies.
Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0, x∗ = 1.0,

u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope: β1 = 0.5.
Number of time periods: T = 100.

Other policies were implemented directly, in Matlab. Robust univariate minimizer fminsearch
was used for the limited lookahead calculation.15 The algorithm for MJLQ was implemented
as described in the main body of the article.
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Figure 55: Dependence of state persistence ρx on parameters ω, σ2
ε and σ2

η under different
policies. Parameter values (unless varying): α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 1.0,
σ2

η = 0.01, ω = 0.5, x∗ = 1.0, u∗ = 0. Starting value: x0 = 0. True initial slope: β1 = 0.5.
Number of time periods: T = 100. Number of simulations: NMC = 400.
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Figure 56: Dependence of state persistence ρx on prior beliefs under different policies.
Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 1.0, σ2
η = 0.01, ω = 0.5, x∗ = 1.0,

u∗ = 0. Starting value: x0 = 0. True initial slope: β1 = 0.5. Number of time periods:
T = 100. Number of simulations: NMC = 400.
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Figure 57: Simulated multiple time-series of regret function Ct under different policies.
Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0, x∗ = 1.0,

u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope: β1 = 0.5.
Number of time periods: T = 100. Number of simulations: NMC = 400.
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Figure 58: Simulated single time-series of regret function Ct under different policies.
Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
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x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope:
β1 = 0.5. Number of time periods: T = 100.
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Figure 59: Evolving distribution of simulated time-series of regret function Ct under
different policies. Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001,

ω = 1.0, x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial
slope: β1 = 0.5. Number of time periods: T = 100. Number of simulations: NMC = 400.
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Figure 60: Pairwise comparisons of single simulated time-series of regret function Ct under
different policies. Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001,

ω = 1.0, x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial
slope: β1 = 0.5. Number of time periods: T = 100.
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Figure 61: Pairwise comparisons of multiple simulated time-series of regret function Ct

under different policies. Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2
ε = 0.01,

σ2
η = 0.0001, ω = 1.0, x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04.

True initial slope: β1 = 0.5. Number of time periods: T = 100. Number of simulations:
NMC = 400.


