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Abstract. We study the quality of passively adaptive approximations to both passively
adaptive optimal and actively adaptive optimal solutions to the Bayesian dual control
problem when coefficients of the target state evolution drift continuously as in Beck and
Wieland (2002). Amongst the passive learning approaches we compare the performance
of certainty equivalent control, anticipated utility policy, limited lookahead and Markov
jump-linear-quadratic approximation. Solutions featuring active experimentation are of
two kinds - the solution to the original infinite horizon dual control problem found by Dy-
namic programming algorithm, and its one-period limited lookahead version. Certainty
equivalent and actively optimal policies displays the largest amount of experimentation,
accidental for the former and intentional for the latter. While we find only modest differ-
ences in expectation between more advanced passive policies on the one hand and either
of the active policies on the other, the fully optimal active policy is the only one robust
to unfortunate rare draws and prevents partitioning of the state space into two basins
of attraction with escape-like dynamics between the two. In addition, anticipated util-
ity policy and approximating Markov jump-linear-quadratic policy with small number
of regimes are hard to distinguish, upholding computational advantages of anticipated
utility.
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To me there is something thrilling and exalting in the thought that we are
drifting forward into a splendid mystery – into something that no mortal
eye hath yet seen, and no intelligence hath yet declared.

–Edward Chapin

1. Introductory Remarks

Imperfect information in the form of model uncertainty in the dynamic intertemporal
choice problems makes the optimizing decision-maker confront difficult compromise between
simultaneously stabilizing the policy target and estimating the impact of policy action. Si-
multaneous solution to a combined control and sequential design of experiment problem is
known as the dual control and was originally introduced and discussed by A. A. Feldbaum in
a sequence of four seminal papers from 1960 and 1961 (Feldbaum, 1960a,b, 1961a,b). Feld-
baum was the first to show that, in principle, the optimal solution can be found by dynamic
programming, via what later became known as Bellman functional equation. The numerical
problems when solving the functional equation are very large and only few simple examples
have been solved. More so, it is difficult to state conditions under which the solution to
the imperfect information dynamic programming problem actually exists. Accordingly, an
entire genres of economic and engineering literatures have been devoted to finding simpler
suboptimal solutions and their comparison with dual optimal dual ones when they could be
found. This brief note is in the same lineage.
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Specifically, we revisit a problem of controlling a regression with continuously evolving
coefficients that was studied in Beck and Wieland (2002). Beck and Wieland allow the
parameter that is multiplicative to the decision variable to drift away in a random walk
fashion away from its initial value. We expand the number of suboptimal approximate
policies to include not just certainty equivalent control but also anticipated utility policy,
Markov Jump Linear Quadratic approximation, leading to the limiting case of the optimal
passively adaptive control. The development of the passively adaptive optimal policy is
new for the class of dual control models with dynamic uncertainty as is the adaptation of
Markov jump-linear-quadratic control to the systems with continuous drift. In addition, we
include an example of suboptimal actively adaptive policy from a family of limited lookahead
controls.

Brief synopsis of the paper is as follows. Section 2 sets the stage by outlining a particular
model of Bayesian dual control of drifting coefficient regressions. Section 3 characterizes
the actively adaptive optimal control that fully balances the tradeoff between stabilization
and experimentation. Section 4 provides new analytic bounds on the optimal cost-to-go
function and on the optimal policy function. These could be used to accelerate the dynamic
programming algorithm by refining initial guesses. Sections 5 through 9 map out various
suboptimal approximations which are made convenient by way of ignoring some aspects of
the decision problem. In particular, section 5 develops certainty equivalent adaptive ap-
proach that shuts down uncertainty about the coefficients of the state transition equation,
setting them equal to the current mean estimate. The policy is adaptive because the param-
eter estimates are updated, thus adapted, every period. Next, section 6 relaxes the certainty
assumption by letting the decision maker surround the policy effectiveness parameter with
a cloud of uncertainty while restricting this uncertainty to be both time-invariant and im-
mune to the choice of policy. This is the so called anticipated utility approximation that
leaves the policy maker of two minds as the controlled process unfolds over time. On the
one hand, the policy is clearly adaptive since the estimates of the uncertain parameter are
updated every period. On the other, both the future coefficient drift and the future learning
(i.e. future updating of parameter estimates) do not feed back on the current policy choice.
Section 7 drives the treatment of uncertain dynamic coefficients one step further by allow-
ing the future parameter dynamics to feature prominently in the mind of optimizing agent,
albeit in a different form. The form of evolving coefficient dynamics is given by the Markov
jump-linear system where the coefficients transitions are governed by a regime-switching
process. Section 8 takes passively adaptive class of solutions to the ultimate limit. In this
limit, the future coefficient dynamics is correctly anticipated but is deemed not impacted by
the current control. In section 9 we change gears by offering a suboptimal alternative with
the full recognition of experimentation incentive and continuous coefficient drift but only
looking ahead one period. Section 10 deals with the six-way comparison amongst various
alternatives. We compare policy functions as well as expected loss functions, expected state
transitions, and expected beliefs. The contrasting features are illustrated with simulated
outcomes under different policies. We explore evolving distributions of simulated outcomes
as well as persistence properties of simulated time series, and how they are impacted by
the model parameters. We diagnose the aspects of the model that influence the differences
in outcomes and the size of probing component in particular. In addition, we comment
on computational demands of various approximating frameworks. Lastly, section 11 offers
concluding remarks and suggests profitable agenda for future research.

2. Dual Control of Drifting Coefficient Regressions

The objective of control is to stabilize the target variable xt around its target value
x∗ while exercising control ut in the sense of minimizing the discounted sum of squared
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deviations:

(2.1) min
{ut}∞t=0

E0

[ ∞∑
t=0

δt
(
(xt − x∗)2 + ω(ut − u∗)2

)
]

,

subject to
xt = α + βtut + γxt−1 + εt, εt ∼ N (0, σ2

ε ),(2.2)
βt = βt−1 + ηt, ηt ∼ N (0, σ2

η).(2.3)

α and γ are assumed to be known. Shock variances are known as well. Naturally, ω ≥ 0,
δ ∈ [0, 1). Initial belief about β0 is Gaussian with mean µ0 and variance Σ0. The timing
assumption is such that, technically speaking, ut+1 is measurable with respect to filtration
Ft generated by histories of stochastic process up until time t.

The focus here is on the time-varying uncertainty regarding a parameter that is multi-
plicative to the decision variable because this type of parameter is crucial for the tradeoff
between current control and estimation. Time variation of the impact of policy action en-
capsulates the idea of the continuously adapting economic environment, driven perhaps by
response of economic agents engaged in the larger dynamic game that is abstracted away
here. More generally, time-varying parameter uncertainty captures the absence of consensus
concerning stability of data generating process over time (including regime switches, thresh-
old effects, or continuous adaptation). This kind of uncertainty has found its way into many
recent macroeconomic papers. For instance, Canova (2006) documents the lack of posterior
tightening as new data becomes available in the time-invariant small-scale New Keynesian
model of the US economy. Cogley and Sargent (2001) detect important departures from
time-invariance in the US inflation dynamics as well.

Beck and Wieland (2002) show that optimal control involves a certain degree of active
learning (experimentation) but to a lesser extent than in the model without time variation
in βt, and also less aggressive then for a certainty-equivalent rule that completely disregards
parameter uncertainty. The reason is similar in both cases. The expected payoff to learning
current parameter value is reduced once it is recognized that the parameter will change
again, or parameter uncertainty is assumed away altogether. On the other hand, time-
variation in the unknown parameter implies also that the incentive to experiment never
disappears, and so experimentation will not die out.

The beliefs about βt are normally distributed, because the prior distribution and like-
lihood functions for each t are all Gaussian. Hence, the beliefs about βt are completely
characterized by the mean and variance parameters µt, and Σt conditional on current in-
formation set, i.e. following the choice of control ut and realization of the shock εt. By
applying recursive Bayesian updating in the linear regression setup, the following updating
equations can be derived:

µt = µt−1 + Σt|t−1ut

(
u2

t Σt|t−1 + σ2
ε

)−1
(xt − α− µt−1ut − γxt−1) ,(2.4)

Σt = Σt|t−1 − (Σt|t−1)2u2
t

(
u2

t (Σt|t−1) + σ2
ε

)−1
,(2.5)

where Σt|t−1 = Σt−1 + σ2
η is the conditional predictive variance of the hidden state βt.

Here, learning is equivalent to Kalman filtering. The updating equation for variance
is the deterministic process, which would be non-increasing if σ2

η = 0. In other words,
if multiplicative policy parameter βt were not time-varying, the learning would eventually
converge.

Endowing decision-maker with the knowledge of econometrics sets in motion the dynamic
view of the system as one where policy decisions are made on the basis of the current observed
physical state and current available information, the stochastic elements are realized, new
observations of the physical state are made, beliefs are updated and the process repeats itself.
Note that even in the absence of explicit autoregressive dynamics of the physical state, the
overall system dynamics is path-dependent through the information accumulation channel.
Information becomes new state variable. The combined state which we’ll be referring to as
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extended state1 is
(2.6) St = (xt, µt, Σt) ∈ S.

Keeping track of information state in addition to the physical state with information
state is both a major headache and a major conceptual breakthrough. The breakthrough
originates in the demonstration of the formal equivalence between the Markovian decision
model with extended state and the original non-Markovian formulation by Hinderer (1970).
The headache sprouts from the realization that the information state is, in general, infinitely-
dimensional, as it is encoded by a continuous distribution. Keeping track of distributions
could be exceedingly hard unless the full arsenal of Bayesian tricks is used, such as the
adoption of conjugate prior distributions and model likelihoods. This is the assumption we
made here so that the information state is captured by the two sufficient statistics, that
evolve according to (2.4)-(2.5).

Forward-looking decisions are made in the view of rewards and losses accruing to the
future state, including the future information state. In the same manner as future state is
manipulated by the use of current control, same control can be used to impact the future
information to the policy-maker’s advantage. Doing so is the essence of directed or active
learning. To the extent that manipulation of future information flows comes at the expense
of current stabilization goal, the control has dual, conflicting objectives. This makes the two
types of state variables hard to disentangle and poses critical computational challenge.

Under arbitrary policy rule u : S → R we can compute expectation of future state
conditional on the current information state:

Etxt+1 = α + µt+1|tut+1 + γxt,(2.7)

EtΣt+1 = Σt + σ2
η − (Σt + σ2

η)2u2
t

(
u2

t (Σt + σ2
η) + σ2

ε

)−1
.(2.8)

By law of iterated expectations, expected evolution of the mean beliefs is trivial
(2.9) Etµt+1|t = µt.

The actively adaptive optimal solution to the problem (2.1) that incorporates the ex-
perimentation motive will be shown in the section 3. Sections 5 through 8 develop various
approximate suboptimal solutions. Section 9 adds one example of actively adaptive subop-
timal policy to the jamboree by considering one-period limited lookahead control. Section
10 illustrates the relationships various policies have amongst themselves especially as it
pertains to exploration (intentional or not) and simulated losses.

3. Actively Adaptive Optimal Control

The dynamic program (2.1) has three natural state variables - ”physical” state variable
xt, and two informational state variables describing beliefs about the impact of the policy
choice – mean predictive belief µt+1 = µt+1|t and predictive belief variance Σt+1|t. The
Bellman equation associated with stationary optimal policy is given by

V (xt, µt+1|t,Σt+1|t)

= min
{ut+1}

{
L(xt, µt+1|t,Σt+1|t, ut+1)

+ δ

∫
V

(
α + βt+1ut+1 + γxt + εt+1, ut+1, µt+2(xt, µt+1|t,Σt+1|t, ut+1), Σt+2|t+1(Σt+1|t, ut+1)

)

× p(βt+1|xt, µt+1|t, Σt+1|t)q(εt+1)dβt+1dεt+1

}

(3.1)

1Kumar (1985) refers to this extended state as hyperstate.
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where L(xt, µt+1|t, Σt+1|t, ut) is expected one-period loss

L(xt, µt+1|t, Σt+1|t, ut+1) =
∫ (

(α + βt+1ut+1 + γxt + εt+1 − x∗)2 + ω(ut+1 − u∗)2
)

× p(βt+1|xt, µt+1|t,Σt+1|t)q(εt+1)dβt+1dεt+1

=
(
Σt+1|t + µ2

t+1|t
)

u2
t+1 + 2

(
γµt+1|txt + µt+1|t(α− x∗)

)
ut+1

+ 2γ(α− x∗)xt + γ2x2
t + σ2

ε + (α− x∗)2 + ω(ut+1 − u∗)2,

(3.2)

and we exploited the fact that variance updating is a deterministic process. In both (3.1) and
(3.2) p(·) is a Gaussian density representing posterior beliefs about the drifting parameter,
while q similarly describes Gaussian distribution of physical state innovation.

Although the stochastic process under control is linear and the loss function is quadratic,
the belief updating equations are non-linear, and hence the dynamic optimization problem
is more difficult than those in the class of linear quadratic problems. Following Easley and
Kiefer (1988), it could be shown that Bellman functional operator is a contraction and a
stationary optimal policy exists such that corresponding value function is continuous and
satisfies the above Bellman equation. Accordingly, the optimal policy and value functions
can be obtained by numerical dynamic programming methods. In particular, we use a com-
bination of the value and policy iterations on the three-dimensional grid in the state-space
with the integration step in (2.1) carried out with the help of Gauss-Hermite quadrature
and tri-linear interpolation.

Figure 1 draws three slices of the actively adaptive optimal policy function. The top slice
is a function of xt and µt when Σt is fixed at 0.05. The middle panel in the figure represents
the policy function in xt and Σt variables when µt = −1.64. The bottom panel contains
the plot of the policy function against µt and Σt with xt = 2.2. In addition, figure 2 is a
volumetric plot that summarizes the policy function against all three dimensions by color
coding function values. Areas of rapid change in the shape of the policy function are given
by multiple color regions. Log-scale for the variance makes the features stand out more.

Under the actively optimal policy, equations (2.7) and (2.8) can be iterated forward to
generate the path of the expected state The path would be realized if all future target state
shocks were zero, εt+τ = 0, controls followed the optimal policy rule, but the unobserved
multiplicative policy coefficient continued to drift randomly. The phase portrait for the
dynamical systems of state expectations is given in figure 3 together with a representative
path. The phase portrait implies convergence towards the target x∗ in the long run. The un-
certainty about the multiplicative policy coefficient begins to increase once the incremental
progress towards the target slows sufficiently. This is because identification/learning needs
variability of system inputs and outputs.

4. Useful Bounds on Actively Optimal Policy

In addition to reimplementation of dynamic programming algorithm, I derived new an-
alytic bounds on the optimal cost-to-go function and on the optimal policy function. The
bounds could be used to accelerate the dynamic programming algorithm by refining initial
guesses. The optimal cost-to-go bound can be derived via analytic q-factor of the inert
policy (ut+τ ≡ 0∀τ ≥ 0) and is as follows:

V ∗
t ≤ V 0

t := Et−1

∞∑
τ=0

δτ
(
(xt+τ − x∗)2 + ω (u∗)2

)

=
(α + γxt−1 − x∗)2 − δγ

(
(x∗)2 − α2 − γx∗(2α− x∗) + γx2

t−1(1 + γ)− 2xt−1(x∗ − α + γ2x∗)
)

(1− δ)(1− γδ)(1− γ2δ)

+
γ3δ2 (xt−1 − x∗)2

(1− δ)(1− γδ)(1− γ2δ)
+

σ2
ε

(1− δ)(1− γ2δ)
+

ω (u∗)2

1− δ
.

(4.1)
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Figure 1: Actively adaptive optimal control. Parameters: α = ω = u∗ = 0, γ = 0.9,
δ = 0.75, x∗ = 1, σ2

ε = 1.0, σ2
η = 0.01. (a) Σt = 0.5 slice; (b) µt = −1.64 slice; (c) xt = 2.2

slice.

The bound does not depend on the belief state components. The tightness of the bound is
tested with the help of figure 4 which displays both the actively optimal cost-to-go and it’s
analytical bound. Evidently the bound is not very tight away from the target x∗ and from
µt = 0 belief subspace.

Expression 4.1 is not the only analytic q-factor available. Convenient independence of
belief evolution allows us to synthesize an analytic formula for the q-factor of the so-called
pseudo-myopic policy, which which is the optimal policy choice when the continuation cost-
to-go is equal to that of the inert policy. After some tedious algebra best relegated to
computer algebra systems, we obtain
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Figure 2: Volumetric plot of actively adaptive optimal policy function. Parameters: α =
ω = u∗ = 0, γ = 0.9, δ = 0.75, x∗ = 1, σ2

ε = 1.0, σ2
η = 0.01.

V pm
t (xt, µt, Σt+1|t) = min

ut+1
Et

{
L(xt+1, ut+1) + δV 0(xt+1)

}

= min
ut+1

{
Et

[
(α + βt+1ut+1 + γxt+1 + εt+1 − x∗)2 + ω (ut+1 − u∗)2

]

+ δEtV
0 (α + βt+1ut+1 + γxt+1 + εt+1)

}

=
2αγxt(1− δ) + α2(1 + γδ)− 2x∗(α + xtγ(1− δ))(1− γ2δ)

(1− δ)(1− γδ)(1− γ2δ)

+
(x∗)2(1− γδ)(1− γ2δ)− (1− γδ)(γ2(−1 + δ)x2

t − σ2
ε − (u∗)2(1− γ2δ)ω)

(1− δ)(1− γδ)(1− γ2δ)

−
(1− γ2δ)

(
(α−x∗+γx−(x−x∗)γ2δ)µt

(1−γδ)(1−γ2δ) + u∗ω
)2

µt + ω − γ2δω + Σt+1|t
.

(4.2)

Performance of V pm
t as a bound is studied in figure 5. Although the new bound seems

not very attractive, there are regions in the state space where it outperforms V 0
t .

Since the minimum of the two upper bounds is also an upper bound, we define combined
bound
(4.3) V 0,pm

t (xt, µt, Σt+1|t) = min
{
V 0

t (xt), V
pm
t (xt, µt, Σt+1|t)

}
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Figure 3: Phase portrait of expected state dynamics under actively optimal policy. Pa-
rameter values: α = 0.1, γ = 0.9, δ = 0.75, σ2

ε = 1.0, σ2
η = 0.04, ω = 1.0, x∗ = 1.0, u∗ = 0.

Mean belief: µt = 0.5.

This bound is nontrivial improvement since there is no uniform dominance among V pm
t and

V 0
t . The combined bound could then be used to derive a bound in the policy space, which

is given by the following expression.
−µt(α + γxt − x∗)− ωu∗ −√D

µ2
t + Σt|t + σ2

η + ω

≤ u∗t+1

−µt(α + γxt − x∗)− ωu∗ +
√

D

µ2
t + Σt|t + σ2

η + ω
,

(4.4)

where
D = (µt(α + γxt − x∗)− ωu∗)2

− (
µ2

t + Σt|t + σ2
η + ω

) (
(α + γxt − x∗)2 + σ2

ε + ω(u∗)2 − V 0,pm
t (xt, µt, Σt+1|t)

)
.

Casual inspection of the bounds’ distance to the optimal policy in figure 6 suggests
that the midpoint could be a reasonable guess for the optimization steps in the dynamic
programming algorithm.

5. Certainty Equivalent Policy

The certainty equivalent policy rule corresponds to the optimal strategy that disregards
parameter uncertainty and belief updating. In other words, the decision maker behaves as if
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Figure 4: Analytic bound for the actively optimal cost-to-go function in the model with
active learning and dynamic model uncertainty. Parameter values: α = 0, γ = 0.9, δ = 0.75,
ω = 1, x∗ = 1, u∗ = 0, σ2

ε = 1, σ2
η = 0.04. Fixed coordinates in the top panel: µt = −0.5,

Σt|t = 0.25. Fixed coordinates in the middle panel: xt = 0, Σt|t = 0.25. Fixed coordinates
in the bottom panel: xt = 0, µt = −0.5.

he knows the impact of policy action perfectly and assumes that the impact does not change
over time. While he does not ignore the state noise εt+1, it turns out that the optimal choice
of policy is the same for all σ2

ε . In particular, it is equal to the control that would obtain
under σ2

ε = 0, i.e. in the absence of noise altogether.
Certainty equivalent approach is known to be optimal in the standard linear quadratic

problems with measurement error (Hansen and Sargent, 2004), but it is definitely not opti-
mal in the case of multiplicative parameter uncertainty. Nevertheless, it constitutes a useful
benchmark, and an important competitor among various approximations.

Certainty equivalent policy is a solution of the following stationary Bellman equation:

V CE(xt) = min
ut+1

{
Et (α + βt+1ut+1 + γxt + εt+1 − x∗)2 + ω(ut+1 − u∗)2

+ δEtV
CE (α + βt+1ut+1 + γxt + εt+1)

}
.

(5.1)
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Figure 5: Analytic bound for the actively optimal cost-to-go function based on the pseudo-
myopic policy in the model with active learning and dynamic model uncertainty. Parameter
values: α = 0, γ = 0.9, δ = 0.75, ω = 1, x∗ = 1, u∗ = 0, σ2

ε = 1, σ2
η = 0.04. Fixed

coordinates in the top panel: µt = −0.5, Σt|t = 0.25. Fixed coordinates in the middle panel:
xt = 0, Σt|t = 0.25. Fixed coordinates in the bottom panel: xt = 0, µt = −0.5.

Conjecture that V CE(x) = Ax2 + 2Bx + C for all x. Then

Ax2 + 2Bx + C = min
u

{ (
µ2 + ω + δµ2A

)
u2

+ 2 (µγx + µ(α− x∗)− ωu∗ + δµγAx + δαµA + δµB)u

+ γ2x2 + σ2
ε + (α− x∗)2 + 2γ(α− x∗) + ω(u∗)2

+ δA(α + γx)2 + δσ2
ε A + 2δB(α + γx) + δC

}
.

Hence,

(5.2) uCE
t+1 = − µγ(1 + δA)

µ2(1 + δA) + ω
xt +

µ(x∗ − α)− δµ(αA + B) + ωu∗

µ2(1 + δA) + ω
.

To implement (5.2) we’ll need the values of constants A, B, and C.
Under (5.2), the value function becomes

V CE(x) =− (µγ(1 + δA)x + µ(α− x∗)− ωu∗ + δαµA + δµB)2

µ2(1 + δA) + ω

+ γ2x2 + (α− x∗)2 + (1 + δA)σ2
ε + ω(u∗)2 + 2γ(α− x∗)x

+ δA(α + γx)2 + 2δB(α + γx) + δC

=Ax2 + 2Bx + C

(5.3)
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Figure 6: Analytic bound for the actively optimal policy function based on analytic cost-
to-go bounds in the model with active learning and dynamic model uncertainty. Parameter
values: α = 0, γ = 0.9, δ = 0.75, ω = 1, x∗ = 1, u∗ = 0, σ2
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for all x ∈ X . Equating coefficients on the like powers of x yields three equations in three
unknowns. The first one is

(5.4) A = − µ2γ2(1 + δA)2

µ2(1 + δA) + ω
+ γ2(1 + δA),

which is a one dimensional version of algebraic Riccati equation. Of the two roots, only
one is positive and constitute the limit of time-dependent Riccati recursion associated with
finite horizon problem. Notice that it becomes linear when ω = 0 with

(5.5) A = − γ(1− µγ)
µ(1− δγ2)

as a solution. The second equation is derived by collecting linear terms:

(5.6) B =
µγ(1 + δA) (µ(x∗ − α) + ωu∗ − δαµA− δµB)

µ2(1 + δA) + ω
+ δγB − γ(x∗ − α) + δαγA

which can be simplified to

(5.7) B =
ωγ ((1 + δA)(µu∗ + α)− x∗)

µ2(1 + δA) + (1− γδ)ω
.
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Figure 7: Certainty equivalent policy.

Finally, the third equation is obtained by equating constant terms:

(1− δ)C =− (µ(α(1 + δA) + δB − x∗)− ωu∗)2

µ2(1 + δA) + ω

+ (1 + δA)σ2
ε + (α− x∗)2 + ω(u∗)2 + δα2A + 2δαB.

(5.8)

Figure 7 depicts the policy response surface as function of physical and informational
state variables xt and µt. Since uCE

t+1 does not depend on Σt, plotting additional slices is
redundant. As the certainty equivalent policy is linear in xt, the impact of µt is to modify
the slope and intercept.

The phase portrait for the dynamical systems of state expectations under the certainty
equivalent control is given in figure 8 together with a representative path. The phase por-
trait implies convergence towards the target x∗ in the long run. While convergence is not
instantaneous with ω > 0, the certainty equivalent policy makes rapid progress towards the
target, covering 95% of the distance in only 7 steps. As before, the uncertainty about the
multiplicative policy coefficient begins to increase in the vicinity of x∗ because the variability
of inputs and outputs becomes insufficient for the identification.

6. Anticipated Utility Policy

Anticipated utility problem differs from certainty equivalent formulation in that β ∼
N (µt+1|t,Σt+1|t) conditional on the information at the end of date t, and this uncertainty
is taken into account when formulating the decision rule in period t. The problem is known
as Bayesian linear regulator (Cogley and Sargent, 2005). The fact that the belief about β
will evolve over time is not taken in to account, however. The only natural state variable
looking forward is xt as beliefs are presumed to remain static. For this reason, and to
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Figure 8: Phase portrait of expected state dynamics under certainty equivalent policy.
Parameter values: α = 0.1, γ = 0.9, δ = 0.75, σ2

ε = 1.0, σ2
η = 0.04, ω = 1.0, x∗ = 1.0,

u∗ = 0. Mean belief: µt = 0.5.

simplify notation, we omit time subscripts on µ and Σ′ = Σ+σ2
η. It should be remembered,

however, that these will be updated once xt+1 is observed and anticipated utility control
will be recalculated.

Bellman equation that anticipated utility decision maker solves is

V (x) = min
u

{
E

(
β2u2 + γ2x2 + σ2

ε + (α− x∗)2 + 2βγxu + 2βuε + 2β(α− x∗)u + 2γxε

+ 2γ(α− x∗)x + 2(α− x∗)ε + ωu2 − 2ωuu∗ + ω(u∗)2 + δV (α + βu + γx + ε)
)}

.

(6.1)

Conjecture quadratic value function V (x) = Ax2 + 2Bx + C. Then

Ax2 + 2Bx + C = min
u

{ (
Σ′ + µ2

)
u2 + γ2x2 + σ2

ε + (α− x∗)2 + 2γµxu

+ 2µ(α− x∗)u + 2γ(α− x∗)x + ωu2 − 2ωu∗u + ω(u∗)2

+ δA
(
α2 + (Σ′ + µ2)u2 + γ2x2 + σ2

ε + 2γµxu + 2αµu + 2αγx
)

+ δB (α + µu + γx) + δC

}
.
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Performing explicit minimization, we get

uAU
t+1 = −γµ(1 + δA)xt − µx∗ + αµ(1 + δA)− ωu∗ + δBµ

(Σ′ + µ2)(1 + δA) + ω

= − γ(1 + δA)µ
(Σ′ + µ2)(1 + δA) + ω

xt +
(x∗ − α(1 + δA)− δB)µ + ωu∗

(Σ′ + µ2)(1 + δA) + ω
,

(6.2)

where A and B are yet to be determined. Notice that the slope does not, in fact, depend
on α.

Substitute (6.2) into the cost to go function:

V AU (x) = − (γµ(1 + δA)x + µ(α(1 + δA)− x∗ + δB)− ωu∗)2

(Σ′ + µ2)(1 + δA) + ω

+ γ2x2 + σε + (α− x∗)2 + 2γ(α− x∗)x + ω(u∗)2

+ δα2A + δγ2Ax2 + δσ2
ε A + 2δαγAx + δαB + δγBx + δC

= Ax2 + 2Bx + C.

Equating like powers of x yields the following equations for the three unknown coefficients
A, B, and C:

(6.3) − −γ2µ2(1 + δA)2

(Σ′ + µ2)(1 + δA) + ω
+ γ2(1 + δA) = A,

(6.4)
γµ(1 + δA) (µ(x∗ − α(1 + δA)− δB) + ωu∗)

(Σ′ + µ2)(1 + δA) + ω
+ γ(α− x∗) + δαγA = (1− δγ)B,

and

− (µ(x∗ − α(1 + δA)− δB) + ωu∗)2

(Σ′ + µ2)(1 + δA) + ω
+ (1 + δA)σ2

ε + (α− x∗)2 + ω(u∗)2 + δα2A + δαB

= (1− δ)C.

(6.5)

Equation for B can be made explicit

(6.6) B =
αγ(1 + δA)2Σ′ + γω ((1 + δA)(µu∗ + α)− x∗)− γΣ′(1 + δA)x∗

(1 + δA) (Σ′(1− γδ) + µ2) + ω(1− γδ)
.

The equation (6.3) that defines A generally has two roots, only one of which could be
positive.

Figure 9 provides familiar-looking slices of the anticipated utility passively adaptive pol-
icy function that are defined by constraining one of the three state dimensions. Like the
certainty equivalent policy, anticipated utility control is linear in xt but is less aggressively
sloped. Figure 10 presents the same information in the form of volumetric plot.

The phase portrait for the dynamical systems of state expectations under the anticipated
utility rule is given in figure 11 together with a representative path. The decrease in the
uncertainty about the multiplicative policy parameter is inconspicuous and the progress
towards the target is at a measured pace. Because of small incremental steps, the learning
process reverts relatively farther away from x∗.

7. Markov Jump Linear Quadratic Control

A very explicit but still relatively general form of model uncertainty that remains tractable
is given by a so-called Markov jump-linear-quadratic (MJLQ) model, where multiplicative
model uncertainty takes the form of different regimes that follow a finite-state Markov chain.
Costa, Fragoso, and Marques (2005) devoted entire monograph to filtering, optimal control,
partial information control and robust control of discrete time Markov jump linear systems.

As a way of introduction to MJLQ framework, let’s assume that the state process takes
the form of regime-switching linear system
(7.1) Xt+1 = As(t+1)Xt + Bs(t+1)Ut+1 + Cs(t+1)εt+1,
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Figure 9: Anticipated utility passively adaptive control. Parameters: α = ω = u∗ = 0,
γ = 0.9, δ = 0.75, x∗ = 1, σ2

ε = 1.0, σ2
η = 0.01. (a) Σt = 0.5 slice; (b) µt = −1.64 slice; (c)

xt = 2.2 slice.

where coefficient matrices (of conforming dimensions, and with new state variable Xt sub-
suming the constant term) are random and can take any one of S different values in period
t + 1, corresponding to S regimes s(t + 1) = 1, . . . , S. The regimes follow a Markov process
with constant transition probabilities,

Pij = Pr{s(t + 1) = j|s(t) = i}, i, j = 1, . . . , S,

forming the transition probability matrix P . Furthermore, as the regimes are unobserved,
the probability distribution over regimes in period t is non-trivial. That distribution, en-
coded with the vector pt = (p1t, . . . , pSt)′ evolves as

pt+1 = P ′pt.

Just like in the anticipated utility case under multiplicative uncertainty in the linear
quadratic Gaussian case, the value function stays quadratic in the physical state Xt, but
now with coefficients that depend on the distribution of regime probabilities.2 Solution for
the entire simplex of regime probabilities would require function approximation methods,
but for any particular probability distribution over regimes, the solution could be obtained
easily by using Riccati recursions over receding finite horizon control as we now show.

2If regimes were observed, coefficients of the quadratic value function would be directly regime-
dependent.
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Figure 10: Volumetric plot of anticipated utility passively adaptive policy function. Pa-
rameters: α = ω = u∗ = 0, γ = 0.9, δ = 0.75, x∗ = 1, σ2

ε = 1.0, σ2
η = 0.01.

The Bellman equation for MJLQ model becomes

J(Xt, pt+1) = X ′
tV (pt+1)Xt + w(pt+1) =

= min
Ut+1

{
X ′

tQXt + U ′
t+1R(pt+1)Ut+1 + 2X ′

tN(pt+1)Ut+1 + δEtJ(Xt+1, pt+1)
}

= min
Ut+1

{
X ′

tQXt + U ′
t+1R(pt+1)Ut+1 + 2X ′

tN(pt+1)Ut+1

+ δ
∑

j,k

pt+1,jPjk

(
X ′

t+1,kV (pt+2)Xt+1,k + w(pt+2)
) }

,

(7.2)

where Xt+1,k = AkXt + BkUt+1 + Ckεt+1, pt+2 = P ′pt+1, Q and R positive semi-definite
matrices, and N is a vector, altogether defining quadratic period loss function.3 R and N
depend on the regime probability distribution pt+1, while Q, as can be shown by straight-
forward algebraic manipulation, does not. Analogously to anticipated utility solution, prob-
abilistic structure is assumed known and unchanging in all perpetuity. Unlike anticipated
utility, the probabilistic structure is that of dynamic coefficients following a regime-switching
process while in the anticipated utility case coefficients are statically uncertain.

3Because of timing differences with Costa, Fragoso, and Marques (2005) and Svensson and Willams
(2007), matrices Q, R and N encapsulate expected period t + 1 loss function.
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Figure 11: Phase portrait of expected state dynamics under anticipated utility policy.
Parameter values: α = 0.1, γ = 0.9, δ = 0.75, σ2

ε = 1.0, σ2
η = 0.04, ω = 1.0, x∗ = 1.0,

u∗ = 0. Mean belief: µt = 0.5.

The first-order condition with respect to Ut+1 is
(7.3) U ′

t+1R(pt+1) + δ
∑

j,k

pt+1,jPjk

(
X ′

tA
′
kV (P ′pt+1)Bk + U ′

t+1B
′
k

)
= 0

and can be written as
(7.4) Ut+1 = −G(pt+1)−1K(pt+1)Xt,

where
G(pt+1) = R(pt+1) + δ

∑

j,k

pt+1,jPjkB′
kV (P ′pt+1)Bk,

K(pt+1) = N(pt+1)′ + δ
∑

j,k

pt+1,jPjkB′
kV (P ′pt+1)Ak.

This leads to the following Riccati equation for the matrix V (pt+1):
(7.5) V (pt+1) = Q + δ

∑

j,k

pt+1,jPjkA′kV (P ′pt+1)Ak −K(pt+1)′G(pt+1)−1K(pt+1).

The scalar w(pt+1) is only important for the expected loss function, not for the control.
It solves the equation
(7.6) w(pt+1) = δ

∑

j,k

pt+1,jPjk (tr (V (P ′pt+1)CkC ′k) + w(P ′pt+1)) .

Riccati equation (7.5) can be solved by receding horizon control. Starting with the con-
tinuation cost-to-go function at sufficiently distant horizon, the Riccati recursion is rolled
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backwards to find the current period expected cost-to-go. The horizon is extended until the
difference between the current period value functions is below tolerance threshold. For the
continuation cost-to-go function at the receding terminal horizon Svensson and Williams
(2005) recommend using the expected value of observed regime control given terminal hori-
zon’s regime probabilities. Calculation of the optimal MJLQ control when regimes are
observed is similar to the one above, except that instead of one matrix of coefficients, it
results in one matrix per regime. Instead of one Riccati equation, we have a system of
coupled Riccati equations. The system can be uncoupled by method of do Val, Geromel,
and Costa (1998). Once uncoupled, doubling algorithm can be used to solve the resulting
optimal linear regulator problem Hansen and Sargent (2004). For additional details and an
algorithm, see Svensson and Williams (2005) and Costa, Fragoso, and Marques (2005).

In order to be able to apply MJLQ idea to our setting, we need to map the drifting
coefficients specification to the finite-state Markov chain representation. There are many
ways to do devise an approximating scheme, none of them perfect because random walk
is a non-stationary process whose variance grows over time without bound whereas any
finite-state Markov chain is bound to be bounded. As a first rough cut, we envisage the
following scheme. Partition the support of N (µt+1|t,Σt+1|t) distribution into S segments of
equal probability, and define S states (regimes) as the expected values of respective trun-
cated normal distributions over each segment. Thus, pt+1 = (1/S, . . . , 1/S)′ and βk =
E(β|β ∈ [Φ−1((k − 1)/S, µt+1|t,Σt+1|t), Φ−1(k/S, µt+1|t, Σt+1|t)], β ∼ N (µt+1|t, Σt+1|t)),
where Φ−1 is the inverse cumulative density function of normal distribution. The tran-
sition probability matrix is similarly defined by discretizing the probability distribution
of βt+2 conditional on βt+1 = βk for each k = 1, . . . , S. Finally, to link state equa-
tion (2.2) with regime switching linear system (7.1), use the following definitions: Xt =(

1
xt − x∗

)
, Ut = ut, Ak =

(
1 0

α + (γ − 1)x∗ + βku∗ γ

)
, Bk =

(
0
βk

)
, Ck =

(
0
σε

)
, Q =

(
γ2(x∗)2 + (α− x∗)2 + 2γ(α− x∗)x∗ + ω(u∗)2 + σ2

ε γ2x∗ + γ(α− x∗)
γ2x∗ + γ(α− x∗) γ2

)
,

N =

(
(α + (γ − 1)x∗)− ωu∗)

(∑S
j=1 pj,t+1βj

)

γ
∑S

j=1 pj,t+1βj

)
, R = ω +

∑S
j=1 pj,t+1β

2
j .

Having described the solution method, we presents some initial three-regime MJLQ policy
calculations in figures 12 and 13. Just like in the case of anticipated utility, acknowledging
parameter uncertainty smears the edges of the policy function along µt = 0 line in compar-
ison to the corresponding plot for the certainty equivalent policy (figure 7). On the other
hand, comparison with the actively adaptive policy function suggests that uncertainty effect
results in too much smoothing. In other words, uncertainty causes disquiet but the fact that
it could be surmounted by an appropriate policy action is not recognized.

The phase portrait for the dynamical systems of state expectations under MJLQ(3) policy
is given in figure 14 together with a representative path. The decrease in the uncertainty
about the multiplicative policy parameter is also not very strong and is quickly forsaken.

8. Passively Adaptive Optimal Control

While MJLQ is general and tractable policy that can account for the plausible changes in
effectiveness of policy action (time-varying β), tenable modulation of the state transmission
channel (time-varying γ), potential regimes of high or low shock variance (time-varying σε),
regime-switching mean dynamics (time-varying α) or any combination of these features, it
does not permit continuous adaptation as in equation (2.3) without proliferating the number
of regimes and destroying tractability. It is of interest to solve for a passively adaptive
policy that is explicit about the random-walk-type coefficient drift. In other words, we are
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Figure 12: Passively adaptive MJLQ(3) control. Parameters: α = ω = u∗ = 0, γ = 0.9,
δ = 0.75, x∗ = 1, σ2

ε = 1.0, σ2
η = 0.01. (a) Σt = 0.05 slice; (b) µt = −1.64 slice; (c) xt = 2.2

slice.

interested in solving the following Bellman equation

V (xt, µt+1|t,Σt+1|t) = min
{ut+1}

{
L(xt, µt+1|t, Σt+1|t, ut+1)

+ δ

∫ ∫ ∫
V

(
α + (βt+1 + ηt+1)ut+1 + γxt + εt+1, βt+1 + ηt+1, Σt+2|t

)

× p(βt+1|xt, µt+1|t, Σt+1|t)p(ηt+1)q(εt+1)dµt+1|tdηt+1dεt+1

}

= min
{ut+1}

{
L(xt, µt+1|t,Σt+1|t, ut+1)

+ δ

∫ ∫
V

(
α + µt+2|tut+1 + γxt + εt+1, µt+2|t,Σt+2|t

)

× p(µt+2|t)q(εt+1)dµt+2|tdεt+1

}
.

(8.1)
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Figure 13: Volumetric plot of passively adaptive MJLQ(3) policy function. Parameters:
α = ω = u∗ = 0, γ = 0.9, δ = 0.75, x∗ = 1, σ2

ε = 1.0, σ2
η = 0.01.

It differs from (3.1) by ignoring the impact of the policy choice, ut+1 on subsequent infor-
mational state variables µt+2|t+1 and Σt+2|t+1.4 The passively optimal approach recognizes
that the regression coefficient βt+1 is subject to shocks ηt+1 that can stir it away from the
current value βt. The second equality in (8.1) is motivated by the martingale property of
conditional expectations by setting µt+2|t = µt+1|t + ηt+1, with ηt+1 ∼ N (

0, σ2
η

)
.5 Forcing

σ2
η = 0 should reduce the control to the anticipated utility policy.6 If, in addition, Σt+1|t = 0,

we obtain certainty equivalent control. Finally, if Σt+1|t = 0, but ση > 0, we obtain different
generalization of certainty equivalence where the decision maker is certain about the current
value of the policy effectiveness but expects that value to drift continuously away in the fu-
ture periods. Obviously, this kind of policy is only of interest in the drifting coefficient case.

4Such ignorance is identical to the assumption of no control in the future periods. Applying Bayes rule
with ut+τ = 0 results in the same Σt+τ |t for τ > 0.

5We should note that the latter assumption is not in itself equivalent to the martingale property if µt+τ |t
are indeed treated as conditional expectations. Under such interpretation, the decision-maker contemplates
the future drift of the current belief consistently with stochastic process for the multiplicative parameter,
which is not observed but whose form is known. Meticulous adherence with conditional expectations inter-
pretation of µt+τ |t and the accompanying martingale property is best admitted with µt+τ |t = µt+1|t for
all τ > 0 assumption. Limited experimentation with this alternative assumption indicates that it results
in a policy that is intermediate between the passively optimal policy studied here and MJLQ(S) family of
policies.

6This implies that anticipated utility function is a good starting point for the value iteration for small
σ2

η .
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Figure 14: Phase portrait of expected state dynamics under MJLQ(3) policy. Parameter
values: α = 0.1, γ = 0.9, δ = 0.75, σ2

ε = 1.0, σ2
η = 0.04, ω = 1.0, x∗ = 1.0, u∗ = 0. Mean

belief: µt = 0.5.

It is equally difficult to compute as it involves the same double integration with respect to
slightly different predictive distribution.

Recursion (8.1) can be solved numerically by the same kind of state-space discretization
and a combination of value and policy iterations as for the actively optimal control. The
presence of the double integration in the equation (8.1) makes doing so computationally
more challenging, though still well within reach of modern computers.7

Figure 15 plots three slices of the passively adaptive optimal policy function. The top
slice is a function of xt and µt when Σt is fixed at 0.05. The middle surface represents the
policy function as a function of xt and Σt for µt = −1.64. The bottom graph plots the
policy function against µt and Σt with xt = 2.2. Volumetric plot in figure 16 summarizes
the policy function against all three dimensions by color coding function values. It is harder
to read, however.

The phase portrait for the dynamical systems of state expectations under the passively
optimal policy is given in figure 17 together with a representative path starting at Σt = 4.0,
xt = 0. The decrease in the uncertainty about the multiplicative policy parameter is arrested
in about five steps.

7Additional complication arises due to the unbounded drift of predictive variance Σt+τ |t in the absence
of new observations which results in the non-stationarity of the problem. Fortunately, the problem can be
cured with the technique similar to the receding control by extending the finite absorbing boundary at Σ̄
until the solution doesn’t change.



22 SERGEI MOROZOV

−4

−2

0

2

4

6

−2

−1

0

1

2
−15

−10

−5

0

5

10

15

 

xt
µt

 

up t

−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)

−4
−2

0
2

4
6

0

0.2

0.4

0.6

0.8

1
−3

−2

−1

0

1

2

3

 

xt
Σt

 

up t

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b)

−2

−1

0

1

2

0

0.2

0.4

0.6

0.8

1
−5

0

5

 

µt
Σt

 

up t

−4

−3

−2

−1

0

1

2

3

4

(c)

Figure 15: Passively adaptive optimal control. Parameters: α = ω = u∗ = 0, γ = 0.9,
δ = 0.75, x∗ = 1, σ2

ε = 1.0, σ2
η = 0.01. (a) Σt = 0.05 slice; (b) µt = −1.64 slice; (c) xt = 2.2

slice.

9. One-Period Limited Lookahead Policy

One-period limited lookahead policy is a solution to one-period-ahead finite horizon ver-
sion of the original problem. It is actively adaptive in the sense that the impact of the policy
choice on the next period beliefs is explicitly accounted for. Adaptive nomen reflects the fact
that even though the solution provides two controls - one for the current period (t + 1) and
one for the next period (t + 2), the decision maker is only committed to implementing the
current period control, discarding ut+2 at the beginning of the next period and recalculating
the solution to the limited lookahead problem anew. At the same time, limited lookahead
policy is suboptimal since it disregards any losses that policy maker incurs in periods beyond
the lookahead horizon as well as associated future beliefs. In this sense, limited lookahead
policy is a generalization of the myopic rule that only minimizes expected one-period loss
given current beliefs. This kind of sub-optimality is in stark contrast with all the other
policies considered here as they solve respective infinite-horizon problems.

The objective of one-period lookahead policy is to minimize explicit two-period problem:8

8Alternative formulation could use finite-horizon dynamic programming and would be less explicit.
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Figure 16: Volumetric plot of passively adaptive optimal policy function. Parameters:
α = ω = u∗ = 0, γ = 0.9, δ = 0.75, x∗ = 1, σ2

ε = 1.0, σ2
η = 0.01.

min
ut+1,ut+2

Et

{
(α + βt+1ut+1 + γxt + εt+1 − x∗)2 + ω(ut+1 − u∗)2

+ δ
[
(α + βt+2ut+2 + γxt+1 + εt+2 − x∗)2 + ω(ut+2 − u∗)2

]}

= min
ut+1,ut+2

{
(α + γxt − x∗)2 + σ2

ε + Et (βt+1)
2
u2

t+1 + 2(α + γxt − x∗) (Etβt+1) ut+1

+ δEt

[
(α + βt+2ut+2 + γ(α + βt+1ut+1 + γxt + εt+1) + εt+2 − x∗)2

]

+ ω(ut+1 − u∗)2 + δω(ut+2 − u∗)2
}

= min
ut+1,ut+2

{
(α + γxt − x∗)2 + σ2

ε +
(
µt + Σt + σ2

η

)
u2

t+1 + 2(α + γxt − x∗)µtut+1

+ δ
(
α(1 + γ) + γ2xt − x∗

)2
+ δ(1 + γ2)σ2

ε + δEt

[
β2

t+2

∣∣ut+1

]
u2

t+2

+ δγ2Et

[
β2

t+1

∣∣ut+1

]
u2

t+1 + 2δ(α(1 + γ) + γ2xt − x∗)Et

[
βt+2

∣∣ut+1

]
ut+2

+ 2δγ(α(1 + γ) + γ2xt − x∗)Et

[
βt+1

∣∣ut+1

]
ut+1 + 2δγEt

[
βt+1βt+2

∣∣ut+1

]
ut+1ut+2

+ ω(ut+1 − u∗)2 + δω(ut+2 − u∗)2
}

.

(9.1)
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Figure 17: Phase portrait of expected state dynamics under passively optimal policy.
Parameter values: α = 0.1, γ = 0.9, δ = 0.75, σ2

ε = 1.0, σ2
η = 0.04, ω = 1.0, x∗ = 1.0,

u∗ = 0. Mean belief: µt = 0.5

Notice that the period t + 2 part of the objective function involves date t expectations of
random variable conditional on future control ut+1. By the updating equation for the mean
(or, alternatively, by the law of iterated expectations) Et

[
βt+2

∣∣ut+1

]
= Et

[
βt+1

∣∣ut+1

]
=

Et [βt+2] = µt. Future variances, on the other hand, follow nontrivial dynamics:
Etβ

2
t+1 = µ2

t + Σt + σ2
η,(9.2)

Et

[
β2

t+1

∣∣ut+1

]
= µ2

t + Σt+1(ut+1),(9.3)

Et

[
βt+1βt+2

∣∣ut+1

]
= µ2

t + Σt+1(ut+1),(9.4)

Et

[
β2

t+2

∣∣ut+1

]
= µ2

t + Σt+1(ut+1) + σ2
η,(9.5)

where

(9.6) Σt+1(ut+1) = Σt + σ2
η −

(
Σt + σ2

η

)2
u2

t+1(
Σt + σ2

η

)
ut+1 + σ2

ε

is belief variance that would obtain at the end of period t + 1 if control ut+1 were chosen at
its beginning. Upon substituting the above relationships into (9.1) the resulting objective
function is no longer quadratic. It is not even globally convex. Figure 18 shows typical
behavior with a kink developing away from the minimum, which appears unique.

Figure 19 displays the one-period lookahead policy function along the three orthogonal
subspaces in the state space, while figure 20 renders the policy function via a volumetric
plot. The shape is by now habitual.
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Figure 18: One period limited lookahead loss function. State coordinates: xt = 0, µt =
−0.5, Σt = 1.0. Parameter values: α = 0.01,γ = 0.9, δ = 0.75, ω = 1.6, x∗ = 1, u∗ = 0,
σ2

ε = 0.2, σ2
η = 0.4.

The phase portrait for the dynamical systems of state expectations under one-period
lookahead policy is given in figure 21 together with a representative path emanating from
Σt = 4.0, xt = 0. The shape of the path is the same as for other policies.

10. Comparison

10.1. Controls. Figure 22 provides comparison of various alternative policies as functions
of the physical state xt. Certainty equivalent equivalent policy function certainly stands
out, displaying much more aggressive reaction to the deviation of the physical state from
its target x∗. In contrast, the remaining five policy functions take uncertainty into account
by responding in a more gradual manner. Once parameter uncertainty is acknowledged,
however, the contributions of other solution elements, such as active experimentation, co-
efficient drift, or infinite horizon, are of the second order of importance. Accordingly, the
policy functions for actively optimal, passively optimal, MJLQ(3)-approximated passively
optimal, one-period limited lookahead, and anticipated utility solutions are all very close to
each other and hard to distinguish visually. The two panels are helpful in ascertaining the
generality of this finding with respect to the weight on control in the period loss function,
ω. As ω increases, all policy functions are rotated clockwise resulting in more cautious
policy. The drive towards caution is strongest for the certainty equivalent solution which
nonetheless remains the most vigorous of the group. In terms of policy’s ranking with re-
spect to the gradualism, increase in control cost introduces slight alterations. MJLQ policy
stays the second least aggressive but the most hesitant policy award is transferred from the
anticipated utility policy to the passively optimal policy. Last thing worth noticing in both
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Figure 19: One-period lookahead control. Parameters: α = ω = u∗ = 0, γ = 0.9, δ = 0.75,
x∗ = 1, σ2

ε = 1.0, σ2
η = 0.01. (a) Σt = 0.05 slice; (b) µt = −1.64 slice; (c) xt = 2.2 slice.

panels is that the two active policies are only very mildly nonlinear, pointing to the relative
unimportance of active experimentation.

However, figure 23 suggests that the difference among policies is deepened as parameter
uncertainty is heightened. In both panels, the certainty equivalent policy is the most ag-
gressive, differing significantly from the group of policies that recognize uncertainty. Since
the certainty equivalent policy does not depend on Σt, the gulf between it and the group of
other policies widens as uncertainty mounts. Of the remaining five policy rules, the active
optimal policy consistently displays the largest amount of exploration in the outlying re-
gions of belief space. We shall investigate how much this difference matters in the cost-to-go
space in section 10.2. The relative rankings of policies other than certainty equivalent one
can vary over the belief space and depend on parameter values.

10.2. Cost-to-go Functions. We evaluate different expected cost-to-go function from the
perspective of fully optimizing decision maker. In other words, we compare not the the
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Figure 20: Volumetric plot of one-period limited lookahead policy function. Parameters:
α = ω = u∗ = 0, γ = 0.9, δ = 0.75, x∗ = 1, σ2

ε = 1.0, σ2
η = 0.01.

different cost-to-go functions that are minimized by their respective policies, but the Q-
factor (Bertsekas, 2005) of the active learning Bellman equation under various policies:

V ∗(xt, µt+1|t, Σt+1|t, ut+1) = E∗V (xt, µt+1|t, Σt+1|t, ut+1)

= L(xt, µt+1|t, Σt+1|t, ut+1)

+ δ

∫
V

(
xt+1(βt+1, ut+1, xt, εt+1), ut+1, µt+2(xt, µt+1|t,Σt+1|t, ut+1),Σt+2|t+1(Σt+1|t, ut+1)

)

× p(βt+1|xt, µt+1|t, Σt+1|t)q(εt+1)dβt+1dεt+1,

(10.1)

where xt+1(βt+1, ut+1, xt, εt+1) is a short-hand for the right hand side of (2.2), ut+1 is one
of the policies under consideration: ut+1 ∈

{
u∗t+1, u

p
t+1, u

LL(1)
t+1 , u

MJLQ(3)
t+1 , uAU

t+1, u
CE
t+1

}
. Of

course, when ut+1 = u∗t+1, the actively adaptive optimal policy is recovered. To evaluate
these value functions, we employ the policy iteration algorithm, now that all six policies are
already available on the grid.

The results are shown in figure 24 against the current physical state variable for the
two alternative values of parameter ω that controls the balance between intentional and
accidental experimentation. The evidence of the figure conforms with the earlier findings.
Since it is only the certainty equivalent policy that stands out from the crowd, its value
is the only one that differs notably. The benefit to experimentation is virtually negligible,
completely overwhelmed by the benefit of simply recognizing parameter uncertainty. Most
bang for the buck comes from simply recognizing parameter uncertainty as in the anticipated
utility case. This is the same conclusion as the one reached in Cogley, Colacito, and Sargent
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Figure 21: Phase portrait of expected state dynamics under one-period lookahead policy.
Parameter values: α = 0.1, γ = 0.9, δ = 0.75, σ2

ε = 1.0, σ2
η = 0.04, ω = 1.0, x∗ = 1.0,

u∗ = 0. Mean belief: µt = 0.5.
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Figure 22: Policy functions under alternative policies. State coordinates: µt = −0.5,
Σt = 0.64. Parameter values: α = 0.1, γ = 0.9, δ = 0.75, x∗ = 1, u∗ = 0, σ2

ε = σ2
η = 0.04.

(a) ω = 0; (b) ω = 1.6;
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Figure 23: Policy functions under alternative policies. State coordinates: µt = −0.5,
xt = 0.5. Parameter values: α = 0.1, γ = 0.9, δ = 0.75, x∗ = 1, u∗ = 0, σ2

ε = σ2
η = 0.04. (a)

ω = 0; (b) ω = 1.6;
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Figure 24: Actively adaptive value function under alternative policies. State coordinates:
µt = −0.5, Σt = 0.64. Parameter values: α = 0.1, γ = 0.9, δ = 0.75, x∗ = 1, u∗ = 0,
σ2

ε = σ2
η = 0.04. (a) ω = 0; (b) ω = 1.6;

(2007). Following these authors, we caution that the value function that defines anticipated
utility control V AU (S, uAU ) is not the same as V ∗(S, uAU ). The former doesn’t allow the
actively experimenting decision maker to assess a ”what-if” scenario of using the anticipated
utility alternative, but instead blinds him to the future dynamics of hidden state and future
learning when evaluating a said alternative. The distinction is of minor importance except
for the case of extreme uncertainty. For moderate values of Σt as in figure 25 we confirm by
plotting the three value functions against xt for two competing values of ω. In both cases
using V AU (S, uAU ) exaggerates the loss under the anticipated utility, while V ∗(S, uAU ) and
V ∗(S, u∗) are virtually indistinguishable. It should be noted however that, in general, it
is not even true that L(S, u∗) ≤ V AU (S, uAU ), where L(S, u∗) is expected one-period loss
under the actively optimal policy. In some outlying regions in the state space (especially
in the direction of increasing uncertainty) the reverse could be true. Figure 26 gives three
slices of Q-factor functions that demonstrate the issue and its potential magnitude. Figure
27 displays the difference V ∗(S, uAU ) − V AU (S, uAU ) as a volumetric plot. The significant
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Figure 25: Actively adaptive and anticipated utility value functions under actively optimal
and anticipated utility policies. State coordinates: µt = −0.5, Σt = 0.64. Parameter values:
α = 0.1, γ = 0.9, δ = 0.75, x∗ = 1, u∗ = 0, σ2

ε = σ2
η = 0.04. (a) ω = 0; (b) ω = 1.6;

regions of the state space are colored in various shades of blue indicating V ∗(S, uAU ) ≥
V AU (S, uAU ), i.e. where using V AU function would have predicted smaller loss to the
anticipated utility policy than if the future learning were taken into account in computing
the expectations.

Continuing with optimal Q-factor discussion, we further remark that the differences
among the three policies are further tightened with ω. Larger differences arise along Σt

dimension as shown in figure 28. The first panel is for the case ω = 0 where the optimal
Q-factor of the certainty equivalent policy is completely off the scale and is omitted. In
both panels the gap grows with Σt as intentional experimentation becomes more beneficial.
This is despite the fact that extreme uncertainty about the multiplicative policy parameter
is not going to last long for the relatively small shock variances used in calculation.

10.3. Expected Evolution of Observed State. Figure 29 translates the differences
amongst various policies into the differences in the expected transition of the physical state.
While it is no more than simply an affine transformation of the policy rule, it lends interpre-
tation to the features of the policy rule and could be used to trace out long term dynamics
of xt in expectation with respect to the current information set. All six policies result in
very similar state transition dynamics, except, again, under the certainty equivalent rule. If
ω = 0, the certainty equivalent policy leads to complete adjustment to target in one-step,
ECE

t xt+1 = x∗. If ω > 0, the state evolution resembles the other five much closer. As ω
increases, the speed of adjustment wanes.9 The actively optimal policy is most inertial when
the physical state is far away from target, more so than any other policy, albeit not by a
large margin.

10.4. Expected Beliefs. Figures 30, 31 and 32 elucidate the evolution of beliefs under
alternative policies. Because beliefs are completely characterized by the mean and variance
and because the law of iterated expectations holds, we only need to predict the evolution of
the variance of the belief about slope of the state equation.

Figure 30 argues several points. One is that the quality of all approximations deteriorates
with larger uncertainty as the learning outcomes of several policies drift further apart with
the variance of the policy parameter. These large variance regions of the state space are

9It could also be shown that the slope of the perceived state transition function under the certainty
equivalent control is of the same sign as the persistence parameter γ, and it provides the bound on all the
other policies. Therefore, in the more natural case of γ > 0, the convergence is monotone, and most policies
display inertia.
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Figure 26: Example where V ∗(S, uAU ) ≤ V AU (S, uAU ) is violated. Parameters: α = 0.1,
γ = 0.9, δ = 0.75, ω = 1.6, x∗ = 1, u∗ = 0,σ2

ε = σ2
η = 0.04. State coordinates in the top

panel: µt = −2, Σt = 1. State coordinates in the middle panel: xt = −4, Σt = 1. State
coordinates in the bottom panel: xt = −4, µt = −2.

Figure 27: Volumetric plot of V ∗(S, uAU )− V AU (S, uAU ). Parameters: α = 0.1, γ = 0.9,
δ = 0.75, ω = 1.6, x∗ = 1, u∗ = 0,σ2

ε = σ2
η = 0.04.
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Figure 28: Actively adaptive value function under alternative policies. State coordinates:
µt = −0.5, xt = 0.5. Parameter values: α = 0.1, γ = 0.9, δ = 0.75, x∗ = 1, u∗ = 0,
σ2

ε = σ2
η = 0.04. (a) ω = 0; (b) ω = 1.6;
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Figure 29: Expected target state under alternative policies. State coordinates: µt = −0.5,
Σt = 0.64. Parameter values: α = 0.1, γ = 0.9, δ = 0.75, x∗ = 1, u∗ = 0, σ2

ε = σ2
η = 0.04.

(a) ω = 0; (b) ω = 1.6;

transitory and do not contribute significantly to the overall cost so that in the cost space
the approximation remains good. Second observation confirms intuition of Kendrick (2005)
that suggests larger role for policy activism with heightened model transmission channel
uncertainty. Indeed, apart from the very aggressive certainty equivalent policy, the actively
adaptive policy induces the fastest rate of learning by way of the biggest reduction in the
variance of the policy parameter (in expectation). The passively optimal policy, in contrast,
tends to discourage learning, being consistently one of the least aggressive policies. This is
because the passively optimal policy acknowledges the most amount of uncertainty, not only
contemporaneously but also its future dynamic evolution, and yet it ignores completely any
uncertainty reductions that may stem from future learning.10 Anticipated utility policy is

10This distinction becomes a little more blurred with larger discount factor δ as the passively optimal
policy then exhibits larger amount of accidental experimentation. For reasons of space, we do not elaborate
on sensitivities of our conclusions to changes in model parameters.
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Figure 30: Expected belief variance under alternative policies. State coordinates: µt =
−0.5, Σt = 0.64. Parameter values: α = 0.1, γ = 0.9, δ = 0.75, x∗ = 1, u∗ = 0, σ2

ε = σ2
η =

0.04. (a) ω = 0; (b) ω = 1.6;
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Figure 31: Expected belief variance under alternative policies. State coordinates: µt =
−0.5, xt = 0.5. Parameter values: α = 0.1, γ = 0.9, δ = 0.75, x∗ = 1, u∗ = 0, σ2

ε = σ2
η =

0.04. (a) ω = 0; (b) ω = 1.6;

typically adjacent to it, indicating that most of unwillingness to learn originates in the un-
certainty about the contemporaneous value of the policy parameter. Passive policy derived
from MJLQ(3) tends to inhabit the area midway between actively and passively optimal
learning curves. This connotes that the approximation error is inadvertently conducive to
quicker learning. Third informal finding concerns convergence of beliefs in expectation.
Holding the physical state constant, the variance of the policy parameter will converge to
the intersection of the learning curve with the 45-degree line. Allowing the drift in the
physical state will complicate the convergence somewhat but since the expectation of the
physical state itself converges, the system dynamics will take approximately the same shape
as in figure 30. Here, the dynamics of beliefs is stable under all alternative policies. The
limit point of the dynamics is at some non-zero value Σu

∞ that depends on the type of
policy under consideration. While more aggressive policies such as the certainty equivalent
rule lead to somewhat lower limit variance of belief about the policy parameter and faster
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Figure 32: Expected state variance under alternative policies. State coordinates: µt =
−0.5, Σt = 0.64. Parameter values: α = 0.1, γ = 0.9, δ = 0.75, x∗ = 1, u∗ = 0, σ2

ε = σ2
η =

0.04. (a) ω = 0; (b) ω = 1.6;

convergence, complete elimination of uncertainty is impossible due to the dynamic coeffi-
cient drift. Fourth element of note is that the learning outcomes become nearly identical
when Σt = 0. Indeed, anticipated utility policy coincides with certainty equivalent rule
exactly, and the other policies only differ through the differences in future states (physical
state only for passive policies and both physical and information states for active policies).
From the belief updating equation (2.5) it becomes clear that the height of the intercept
with E(Σ) axis is roughly proportionate to σ2

η. Accordingly, we make the fifth observation
that the learning curves for all policies are adjusted upward in response to larger dynamic
uncertainty. Last ramification of studying figure 30 is dependence of learning curves on the
relative cost of control ω. As ω increases learning gets slower,especially for the two active
policies and the certainty equivalent rule. The region of convexity for the learning curves
that is apparent for ω = 0, disappears when ω = 1.6 Interestingly as well, the one-period
lookahead’s quality of learning suffers more than for the other policies, making the agent
slowest to learn in the region of moderate uncertainty under that policy.

Figure 32 interprets the inferences about EtΣt+1|t+1 in the space of variance of the future
target state by using the relationship

Et(V art+1(xt+1)|ut+1) = u2
t+1Et

(
Σt+1|t+1|ut+1

)
+ σ2

ε .

This predictive variance of the physical state is shaped by the two offsetting influences,
in line with the general philosophy of the dual control. On one hand, it grows with the
size of control impulse. On the other, it is tempered by a reduction in variance of the
policy parameter due to learning. In consequence, the predictive variance plotted against
the physical state xt take characteristic shape of a potential well, with a sharp minimum at
x∗. As figure 32 demonstrates, the passively optimal policy resolves stabilization-learning
dilemma entirely in favor of stabilization by yielding consistently lower predictive variance,
especially as control becomes relatively more costly. At the other extreme lies the outcome
of the certainty equivalent policy rule which manipulates the control without regard to
the parameter uncertainty and could lead the target state potentially astray. The actively
optimal policy tends to generate more volatile xt+1 in the vicinity of the target than other
non-certainty-equivalent policies. One-period lookahead and MJLQ-based policies appear
to be the closest approximations to the actively optimal policy by balancing the two forces
impinging on the predictive state variance in the similar proportions.

10.5. Expected Dynamics of Extended State. Here we put together the phase diagrams
displayed for each policy individually and the discussion of the preceding two sections.
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Figure 33 contrasts the paths of the expected extended state (apart from mean which is
constant) under alternative policies for the same parameter configuration and originating
from the same starting point in the state space. It is clear that under all policies one
would expect eventual convergence of the physical state to target. It is also evident that
the learning process will not converge in the sense that limiting value of the belief variance
is non-zero unless σ2

η = 0.11 Of the six policies, the certainty equivalent policy exhibits
excess accidental experimentation that makes it the only policy with EtΣt+τ |t falling below
2. The first step it makes is also the largest. The actively optimal policy ranks second
in the amount of experimentation. It also display intriguing behavior in the vicinity of x∗

where for moderate uncertainty levels the actively optimal policy would cause x∗ to repel
the expected target state. We can speculate that the anomaly is driven by the incentive to
explore the state-space in order to slow down the creeping uncertainty which can in turn
lead to disastrous future decisions. At the other extreme, passively optimal policy shows
almost no learning along the expected state, the least amount of progress towards the target
at every step and the highest uncertainty about the multiplicative policy parameter at the
and of the path. Anticipated utility policy is very close and so is one-period lookahead
policy. MJLQ-type policy displays intermediate degree of gradualism, most likely because
treating drifting coefficient as if generated by stationary process would tend to understate
the true uncertainty in the mind of a decision-maker. One-period lookahead, on the other
hand, trades off a different kind of an approximation. By ignoring learning beyond that in
the immediate future it understates the benefit to the active probing. The result is that the
path nearly coincides with passively optimal one.

10.6. Simulated Outcomes. In this section we inquire into the shapes of outcomes that
can arise in Monte Carlo simulations under alternative policies. This is useful for a number of
reasons. Foremost of these is that it can help uncover certain peculiarities of outcomes given
policy rule and sensitivity of these feature to the details of the economic environment in the
background. In context of the drifting coefficient regression, and if the drifting coefficients
are thought to represent the model uncertainty, study of diversity of simulated outcomes
goes beyond the simple duty to report expected losses under different policy as a guide to
policy evaluation under model uncertainty.12 It serves as an additional quantitative and
visual aid to communicate how model uncertainty enters the policy evaluation. In doing so
it accords with the spirit of Brock, Durlauf, and West’s 2007 encouragement to explore the
degree of outcome dispersion and action dispersion.

10.6.1. Control Sequences. First, we investigate the shape of the dynamics of the policy
choice. Figure 34 shows 400 simulated time-series of length T = 100 under different policies,
all emerging from identical initial condition x0 = 0, µ0 = −0.1, Σ0 = 0.04. 13 For
consistency of comparison across alternative policies the random disturbances were held the
same by seeding the random number generator with the same value prior to simulating given
policy variety. Several observations emerge. One, the actively optimal policy is the only

11The learning process could even diverge to infinity, but since the paths are calculated under the as-
sumption that εt+τ = 0 for all τ , the probability of divergence is vanishing. Noise in the state process will
increase the amount of unintended probing to prevent divergence.

12The calculation of these expectations should account for future learning. Thus, Q-factors that we
discussed earlier are the most appropriate reporting tools here.

13Probability bands for evolving distributions are commonly constructed by connecting the points, such as
multiples of standard error or certain percentiles, at each horizon. Resulting objects are used in fan charts
in the context of multi-horizon forecasting (Canova, 2007; Cogley, Morozov, and Sargent, 2005), in the
standard error bands in reporting of the estimated VAR impulse responses. These evolving distributions are
correlated if they are constructed from recursive simulations, and hence plots connecting the points at each
horizon are likely to misrepresent the true uncertainty. Sims and Zha (1999) propose an orthogonalization
which eliminates this correlation. We sidestep the issue by providing plots with large number of simulated
paths. We can simultaneously discern the typical shapes of the time-paths and the frequency of time-path
visits to regions in the state space. Fan charts are reported as well.
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Figure 33: Expected dynamics of extended state under different policies. Parameter values:
α = 0.1, γ = 0.9, δ = 0.75, σ2

ε = 1.0, σ2
η = 0.04, ω = 1.0, x∗ = 1.0, u∗ = 0. Mean belief:

µt = 0.5. Starting values: xt = 0, Σt = 4.

one without paths gravitating to zero policy intervention line ut = 0, staying above it after
the initial exploration phase. Two, most of the actively optimal policy paths start relatively
far in the negative territory (given that initial belief is centered around µ0 = −0.1 which
is of the opposite sign to β1 = 0.5), switch quickly to large positive values of control, and
then settle into the relatively narrow range of policy actions. Three, one period lookahead
policy oscillates in the tightest ambit. The three passive policies that recognize uncertainty
(passively optimal, MJLQ(3) and anticipated utility) are also the ones with the largest share
of occasional outliers.

Figure 35 puts the policy differences under alternative assumptions under the microscope
by concentrating on a single time-series realization with exactly equal random elements
across policies. Certainty equivalent policy contrasts starkly with others as it quickly tapers
off towards ut = 0. One period lookahead seem to involve the least amount of probing and
activism of the five non-certainty-equivalent policies. Actively optimal policy continues to
display the greatest amount of experimentation during the early stages of the simulation,
in both positive and negative directions. After about 15 time steps the five non-certainty-
equivalent policies lie virtually on top of each other.

Figure 36 complements the story of figure 34 by representing the policy dynamics by
means of a fanchart. Differently shaded bands of that plot indicate the probability ranges
of time-varying policy choice. The darkest band encodes the range of ±5% probability
around the median. This figure confirms that actively optimal policy varies within notably
more constricted range than other policies after the initial outburst of activity. One period
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Figure 34: Simulated multiple time-series of control under different policies. Parameter
values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0, x∗ = 1.0, u∗ = 0.

Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope: β1 = 0.5. Number of
time periods: T = 100. Number of simulations: NMC = 400.

lookahead is also remarkable in that fully 50% of the paths are attracted by ut = 0 line.
Distributions of certainty equivalent, anticipated utility and MJLQ(3) controls are also
markedly similar at every point in time. Passively optimal policy, in contrast, is dispersed
notably more uniformly within the band as indicated by the lack of concentration around
the median path.

Another way to look at the differences among policies is with the help of simulation-
based pairwise scatter plots. These are shown in figure 37 for a single simulated time-
series and in figure 38 for multiple simulations. Similarity is affirmed when the scatterplot
is bundled tightly around 45-degree line. From that perspective, anticipated utility and
MJLQ(3) policies are remarkably alike. Certainty equivalent and anticipated utility policies
are not too different, apart form the incidence of occasional clusters at ut = 0. On the
contrary, one period lookahead policy is unlike any other. Also, taking account of additional
uncertainty due to multiple simulations is seemingly important. For example, a single
simulation scatter plot appears to indicate close affinity of actively optimal policy with
certainty equivalent, anticipated utility and MJLQ(3) policies, while the multiple simulation
scatter plot bespeaks considerable uncertainty surrounding this relationship. As a results,
there is only moderate correlation between the actively optimal policy on the one hand and
anticipated utility, MJLQ(3) and certainty equivalent approaches. The relationship between
actively and passively optimal policies is also not entirely unequivocal.

10.6.2. State Sequences. Corresponding to the dynamics of control sequences we present
the dynamic simulations of the physical state xt and information state (µt, Σt). Figures 39
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Figure 35: Simulated single time-series of control under different policies. Parameter
values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0, x∗ = 1.0, u∗ = 0.

Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope: β1 = 0.5. Number of
time periods: T = 100.

through 43 are dedicated to the physical state xt. The most overt feature is the bifurcation
of the state sequences into two basins of attraction for all suboptimal policies. The gap
between the two branches is largest for the certainty equivalent policy, and the smallest
for the one period lookahead. Figure 40 concentrates on a single simulation and supports
findings of figure 35 in terms of the shape of the paths and the distance from target x∗.

Figure 41 establishes close similarity of evolving distributions for outcomes under antic-
ipated utility, MJLQ(3), and to a lesser extent certainty equivalent policies. The range of
state fluctuation is most narrow for actively optimal policy and widest for passively optimal
policy, in accordance with the characteristics of policy functions.

Study of figures 42 and 43 confirms that outcomes under anticipated utility and MJLQ(3)
policies are essentially identical. It also emphasizes distinctiveness of one period lookahead.
Finally, it makes clear that the quality of the approximation of the actively optimal policy
by any passive approximation depends on whether under an approximate policy the state
stays within the branch that is closer to x∗.

Figures 44 through 48 depict the evolution of mean beliefs in simulations. A fair number
of paths under each suboptimal policy remain attracted to µt = 0 whereas the average of
the unobserved policy slope is 0.5 (at every point in time). For example, the mean belief
under the certainty equivalent policy in a particular simulation chosen for the plot in figure
45 is quickly stuck at zero. Such tendency induces slower learning and inhibits the progress
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Figure 36: Evolving distribution of simulated time-series of control under different policies.
Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0, x∗ = 1.0,

u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope: β1 = 0.5.
Number of time periods: T = 100. Number of simulations: NMC = 400.

of the mean belief towards the latent slope process. The actively optimal policy learns the
latent slope process the quickest of all as can be seen in figure 46. Again, mean beliefs are
most highly correlated between anticipated utility and MJLQ(3) policies. Other pairs could
be rather different on occasion, see figures 47 and 48.

Figure 49 demonstrates the superiority of the actively optimal strategy once more. Ac-
tively optimal policy is the only one with uniformly declining belief variance. Because of
the permanent coefficient drift, the limit belief variance, if it exists, is strictly above zero.
The single time-series simulation in figure 50 shows clearly that the belief variance is the
lowest for the actively optimal policy, whereas that for certainty equivalent policy diverges.
The entire evolving distribution of variance of belief is most narrow for the actively opti-
mal policy. Pairwise scatter plots of belief variances indicate close similarity of anticipated
utility and MJLQ(3), and clear supremacy of actively optimal policy. It also appears that
the passively optimal policy is no better an approximation than other, simpler to compute,
policies.

Since Etxt+1 is just a linear transformation of xt and ut+1, most of the conclusions about
simulated outcomes for xt and ut remain valid for Etxt+1. Indeed, 54 is a virtual carbon
copy of 39. To economize on space we omit the corresponding fancharts and scatter plots.

10.6.3. Persistence. A different perspective on the simulated outcomes is afforded by study-
ing persistence of the realized simulated state. That persistence comes from two sources.
The first source is the autoregressive dependence in the state equation. The second is the
state dependence of the policy choice that feeds back on the subsequent realizations of the
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Figure 37: Pairwise comparisons of single simulated time-series of control under different
policies. Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0,

x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope:
β1 = 0.5. Number of time periods: T = 100.

physical state. We use simple first order sample autocorrelation as a linear persistence es-
timate in place of more complex spectral measures (Hamilton, 1994) or nonlinear measures
(Gourieroux and Jasiak, 1999). While this is imperfect and misspecified measures, it is a
common lens to study history dependence in time-series. All the results reported here are
specific to simulations with direct autocorrelation γ = 0.9.

First, we report the observations on persistence that are common to different policy
rules. When ω = 1, i.e. when state and control deviations are perfectly balanced in the
period loss function, we find that the state persistence is mostly driven by the assumed
autoregressive dynamics, and not by the state dependence of the policy rule. At the same
time, the contribution of control to persistence depends very much on parameters of the dual
control problem. For example, the state persistence depends positively on the the weight
ω by which control deviations are penalized in the period loss function. With ω = 0, the
average state persistence under any of the six policies is at most 0.6, well below the assumed
autoregressive coefficient γ = 0.9 in the state equation. This could be seen in figure 55
where we also investigate the parametric dependence with respect to σ2

ε and σ2
η. For the

former, we observe that the state persistence tends to decline with larger state uncertainty,
regardless of the policy, although there’s also large sample variability. For the latter, the
results belong to the pool of features that are distinct across policy rules.

Turning to the attributes that are dissimilar, we find the smallest amount of uncertainty
about persistence for the actively optimal and certainty equivalent policies across the range
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Figure 38: Pairwise comparisons of multiple simulated time-series of control under different
policies. Parameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0,

x∗ = 1.0, u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope:
β1 = 0.5. Number of time periods: T = 100. Number of simulations: NMC = 400.

of ω and σ2
η values. As σ2

η increases, the certainty equivalent control results in by far the
largest reduction of the state persistence. The actively optimal and the passively optimal
policies are the only ones displaying increase in persistence as σ2

η increases. Increasing
σ2

η also drives the wedge between persistence under the passively optimal policy rule and
persistence under anticipated utility and MJLQ(3) approximations. This makes sense as the
quality of approximation provided by the latter two policies should necessarily deteriorate
with faster parameter drift. In contrast, the distinction between anticipated utility and
MJLQ(3) control is so insignificant that it doesn’t show across different parameters. One-
period lookahead is largely similar to them with only slightly higher persistence across
parameter values.

Doctrinaire priors can have long-lasting impact on the persistence. This is shown in
figure 56 that plots the average sample autocorrelation of the physical state against prior
beliefs. Simulations underlying the construction only differ by initial values as well as
policy rules but not in the way of random shocks. With Σ0 in the vicinity of zero, T =
100 time periods is not enough to dissipate the impact of the prior. The direction of the
impact depends on the sign of µ0. If µ0 < 0, the persistence is amplified. Otherwise, it
is dampened. Among the different policies, the optimal and certainty equivalent policies
show the quickest dispersion of the impact of the prior beliefs. For the former policy, this
is due to significant active experimentation components. For the latter policy, it is due to
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Figure 39: Simulated multiple time-series of target state xt under different policies. Pa-
rameter values: α = −0.05, γ = 0.9, δ = 0.75, σ2

ε = 0.01, σ2
η = 0.0001, ω = 1.0, x∗ = 1.0,

u∗ = 0. Starting values: x0 = 0, µ0 = −0.1, Σt = 0.04. True initial slope: β1 = 0.5.
Number of time periods: T = 100. Number of simulations: NMC = 400.

accidental experimentation. For passive policies with uncertainty, the impact of priors on
the persistence could be somewhat enduring.

10.6.4. Regret Function. The idea of regret goes back to Savage who argued for a decision-
making based on the difference between the consequences of the best decision that could
have been taken had the underlying circumstances been known and the decision that was
in fact taken before they were known. Here we associate regret function in simulations
simply with simulated cumulative loss function. This allows us to assess the performance
of the given policy in terms of original intertemporal objective function. Indeed, acquiring
better knowledge of the unobserved multiplicative policy coefficient has any worth only in
the context of the performance index (2.1). Figures 57 through 61 explore performance of
various policies via the following version of regret function:

(10.2) Ct =
t∑

τ=0

δτ
(
(xτ − x∗)2 + ω(uτ − u∗)2

)
.

Figures 57 and 59 demonstrate dominance of the actively optimal policy in terms of
simulated regrets. For fairly low discount factor δ = 0.75 used in simulations, convergence of
the regret function to its long run value is quick, and there is no discernable time variation in
the regret distribution after just a handful of periods. Figure 58 confirms quick convergence
and also pinpoints the source of the actively optimal advantage – the loss is larger in the
first two periods while the decision maker experiments in order to zoom in his beliefs about


