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Abstract. We describe and illustrate three categories methods that help decide on whether risk
factors, underlying portfolio risk measurement framework such as VaR, should be represented as
returns or differences (or some hybrid form). Methods in the first category rank alternative rep-
resentations by their performance with respect to stationarity tests, in-sample or out-of-sample
measures of goodness of fit, or by information-theoretic considerations. These methods are largely
informal and must be handled with care, as the two representations are not nested, goodness-of-
fit tests can be biased if their null distributions are themselves estimated, traditional unit root tests
of stationarity are designed to address somewhat different question, while homoscedasticity tests
tend to have power only against specific alternatives, are sensitive to non-normality and often in-
conclusive. Second category of methods revolves around some form of elasticity of volatility model
which conveniently nests both return and difference representations. Depending on the time-series
in question, and one’s willingness to make distributional or prior assumptions, GMM, maximum
likelihood or Bayesian estimation procedures may be called upon. Third category nests return and
difference representations in the wider non-parametric class and includes methods to estimate the
volatility as a smooth function of the level, allowing for a possibility of functional representation
switch depending on the level. The methods are illustrated using daily interest rate swap data, for
which we find that the return formulation is preferable when rates are below roughly 2.8%, as is
prevalent in most recent four year sub-sample, while the difference representation works better for
rates above this cutoff.
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1. Introduction

Accurate portfolio risk measurement is predicated on striking the right balance between two
sources of information that impinge on the risk forecast – current market conditions and historical
experience. Indeed, a key assumption underlying risk measurement methodologies is that the
future looks like the past.1

A technical basis for treating the future like the past is the concept of stationarity, meaning
that the joint probability distribution of potential losses for a fixed portfolio does not change when
shifted in time. Since the potential loss distribution of a portfolio is assembled from arbitrary
exposures to risk factors, it follows that risk factors themselves should be expressed in stationary
form, if the same set of factors is to be used for an arbitrary portfolio. Expressing time-series in a
stationary form is a way of addressing frequent critique of risk estimates as based on the data
that are no longer relevant to the current conditions. In stationary form, all data look statistically
similar and retain their relevance.

At its core, the entire field of time-series econometrics can be viewed as a quest to suitably
transform data in order to achieve stationarity. For instance, models for detrending, seasonal
adjustment and even GARCH all revolve around separating predictable features from purely ran-
dom noise that is distributed independently and identically over time. A direct consequence for
the more precise risk measurement would be to apply transformation to stationarity to all the risk
factors, either one at a time or, better still, jointly. Indeed, this is the approach taken in assorted
academic and regulatory papers advocating the use of GARCH for VaR (see, e.g., Angelidis,
Benos, and Degiannakis (2004) and references therein). Unfortunately, for large portfolios ex-
posed literally to thousands of different risk factors, the method of fitting sophisticated time-series
models to either the entire set of factors jointly or to individual series one at a time founders on
the reefs of dimensionality, complexity and implementability.

It should be of no surprise, then, that, currently, only two forms of risk factor functional rep-
resentation are widely used, relative (i.e. proportional) change (“returns”) and absolute change
(“differences”), and the choice between the two can have a nontrivial impact on the estimated
value-at-risk. As the nature of the risk factor time series going into the overall risk measure-
ment framework may evolve over time, the choice of functional form should be periodically re-
evaluated. Similarly, for a novel risk factor the choice should be established from scratch. This
paper aims to lay out supporting statistical foundations to making intelligent choice about risk
functional form. In doing so, it provides both description of several statistical methods behind
the choice and guidance to the practical application. We illustrate various approaches using a
dataset of medium- to long-term US interest rate swap rates since the turn of the century.

The statistical methods for the functional specification choice that we discuss fall into three
broad categories. First category of methods takes as given that the only two options – returns or
differences – are available. Methods in this category attempt to rank the two alternatives based
on statistical criteria such as goodness-of-fit statistics, stationarity tests or measures linked to
model complexity . We argue that such non-nested approaches must be applied with caution.
Goodness-of-fit criteria could be a shaky basis for functional form comparison, for three reasons.

1Value-at-Risk (VaR) models, in use at most banks to satisfy market risk capital requirements and concerning with
tail risks during “normal” times, identify the relevant past by selecting a relatively short recent time window, typically
no longer than 4 years. Stress scenarios, on the other hand, may look further into the past for guidance on large shock
magnitudes and their frequency of incidence.
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First, goodness-of-fit is commonly a joint hypothesis of an appropriate functional form trans-
formation and parametric distributional assumptions. Fitting parsimonious parametric forms to
unconditional distributions of most financial time-series is likely to be overwhelmingly rejected no
matter the transformation used, while fitting complex flexible models may lead to the in-sample
non-rejection for both forms and failure out-of-sample. Second, many of these tests tend to have
low power in finite samples, particularly if parametric assumptions are relaxed. Finally, many of
these tests (such as Kolmogorov-Smirnov or Anderson-Darling) are biased when the null distri-
bution is itself estimated instead of being pre-specified in advance.2 Testing for stationarity must
also be handled with similar care. Oftentimes, testing for stationarity is taken to mean testing for
unit roots but that only relates to the first order stationarity, telling us whether a time-series has
a stochastic trend and whether it needs to be further differenced in order to achieve stationarity.
For risk measurement this is insufficient, especially as most daily financial time-series tend not to
have unit roots over medium-term sample periods, whether measured in returns or differences,
leading to inconclusive and inconsistent ranking of the two forms. Second- (and higher-) order
stationarity is more important, as are issues of structural breaks and regime switches. A battery
of heteroscedasticity tests, as exemplified by section 3.3, is a better starting point even when
these tests have power only against specific alternatives. Even then, finding ways to neutralize
non-constant variance may not be sufficient for the task at hand since other measures of varia-
tion may be important. Information-based quantities, touched upon in section 3.4, may provide
additional food for thought, but are not easy to link directly to objects of interest.

The second category of methods centers around constant elasticity of variance (CEV) specifi-
cation and includes some of its extensions. The main merit of this approach is that CEV nests both
returns and differences, thus standard tests could be used to discriminate the two. Depending
on the strengths of assumptions one is willing to make, there are several estimation and testing
techniques available. At the one extreme is Generalized Method of Moments (GMM) approach
that only uses limited information embodied in selected moment or orthogonality conditions. No
assumption is made about the distributional form of residuals. If, on the other hand, we are will-
ing to commit to a particular distribution of residuals, maximum likelihood estimation approach
exploits this additional information to gain further statistical efficiency. At the other extreme,
Bayesian methods allow incorporating prior information to restrict parameter space more tightly
and guide inference toward more intuitively appealing regions in the parameter space. Aside
from ability to incorporate prior information, Bayesian methods have some technical advantages
as well. For example, Bayesian approach eschews difficult issues of multivariate optimization that
plague maximum likelihood and GMM. Furthermore, posterior inference does not rely on any as-
ymptotic approximations and so applies in finite sample. Hence, it will result in tighter confidence
sets and more precise inference, assuming the model is correctly specified.3 Finally, an attractive
feature of Bayesian approach is its modular nature so that Bayesian CEV model can be, without
difficulty, extended to a multivariate panel setting where multiple time-series are constrained to
have common elasticity of variance. In the interest rate modeling practice, the assumption of
constant elasticity of variance appears too restrictive. Patterns in elasticity estimators over sub-
samples and along the yield curve suggest that, instead, elasticity of volatility tends to decline as

2Modifications to Kolmogorov-Smirnov and Anderson-Darling test are available for select parametric families of null
distributions.

3Indeed, Chan, Karolyi, Longstaff, and Sanders (1992) estimate scale of variance so imprecisely that the parameter
is not significantly different from zero, while it should be strictly positive.
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the rates rise. To accommodate this feature we propose a couple of variable elasticity models.
Further extensions allow differential elasticities for upward and downward moves and introduce
additional sources of randomness in volatility.

Third category nests the return and difference specifications within an even richer functional
class of diffusion coefficient representations that is described non-parametrically. In other words,
the object of estimation is now the conditional volatility function 𝜎(⋅). Particular case of constant
function specifies difference representation, while affine functions correspond to return representa-
tion. While a variety of intermediate shapes is possible, which makes it harder to form a definitive
conclusion about functional form for the entire range of values that a time-series can take, the
diffusion function representation facilitates local functional form choice, i.e., choice conditional on
current levels of the series. In other words, if diffusion coefficient function appears more or less
constant within some range, the difference specification is preferred within that range. Elsewhere,
in regions of rapidly changing volatility, the return representation would likely work better. The
additional flexibility of being able to switch between representations depending on the level of
the series could therefore be useful. Combining methods in this category with variable elasticity
models from the second category yields a fairly robust conclusion that the US interest rate swap
rates should be modeled as returns below roughly 280 basis points and as differences above the
cutoff.

The rest of the paper is organized as follows. Section 2 provides brief description of the interest
rate swaps dataset that we use to illustrate our methods. Section 3 is dedicated to the critical
analysis of non-nested approaches such as goodness-of-fit tests (section 3.1), unit root tests
(section 3.2), heteroscedasticity tests (section 3.3) and mutual information (section 3.4). Section
4 lays out CEV model and three ways to estimate it, with sections 5 through 10 extending the
model in various directions, including panels, variable elasticity settings and environments where
volatility has its own sources of randomness. Section 11 describes non-parametric method of
estimating the volatility function and tests of parametric models against non-parametric alter-
native. Finally, section 12 offers concluding remarks. Appendices A through D explain estimation
details in more depth.

2. Sample Risk Factor Dataset

To put the issue into the practical perspective, we study risk form selection on a recent daily
dataset of non-seasonally-adjusted US dollar interest rate swap rates over July 3, 2000 through
July 26, 2012 (3,019 data points excluding holidays) from the Federal Reserve Bank of St. Louis
database. To focus more clearly on the behavior of rates that is not tied to the jumps in the
overnight Federal Funds policy target rate, we excluded all maturities less than one year. All 8
series are plotted in Figure 1 with shaded areas representing the last four and last one years of
data. Visual inspection of plots of returns and differences in Figure 2 indicates that the difference
representation looks more uniformly jagged throughout the entire sample, and thus appear to
have a better chance of selection. Post mid-2007, the return time-series visually appear to have
less time variation in volatility. Statistical analysis that follows will generally reinforce these initial
observations.

3. Globally Non-nested Tests
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Figure 1. US dollar interest rate swap rates.

A beguiling approach to try to distinguish whether the interest rate dynamics should be mod-
eled via absolute or proportional changes is to test separately how well each form captures
certain desirable properties such as adequate model fit, satisfactory degree of stationarity, low
model complexity or muted sensitivity to outside information. Relative to such properties, it is
tempting to consider the two alternatives as non-nested in a sense that it is not possible to
derive one representation by means of an exact set of parametric restrictions or as a result of
a limiting process (Gouriéroux and Monfort, 1994). Moreover, it would seem attractive to treat
them as globally non-nested, that is, without reference to any encompassing model (Pesaran,
1987). The methods in this section follow this approach with varying degrees of sophistication
but tend not to lead to a clear verdict. Such failure is due to the lack of due care as well as confu-
sion over purposes of model selection versus hypothesis testing as the literature on non-nested
hypothesis testing showed quite compellingly (Pesaran and Weeks, 1999). We will revisit this
point at the end of the section.

3.1. Goodness-of-Fit Measures. Measures of goodness-of-fit typically summarize the discrep-
ancy between observed values and values implied by hypothesized statistical distribution or



10 SERGEI MOROZOV

−0.4

−0.2

0

0.2

Date

20
00

.0
7.

03
20

02
.0

3.
28

20
03

.1
2.

17
20

05
.0

9.
07

20
07

.0
5.

29
20

09
.0

2.
18

20
10

.1
1.

04
20

12
.0

7.
25

P
er

ce
nt

Absolute changes

−0.2

−0.1

0

0.1

0.2

Date

20
00

.0
7.

03
20

02
.0

3.
28

20
03

.1
2.

17
20

05
.0

9.
07

20
07

.0
5.

29
20

09
.0

2.
18

20
10

.1
1.

04
20

12
.0

7.
25

P
er

ce
nt

Relative changes

0

0.05

0.1

0.15

0.2

Date

20
00

.0
7.

03
20

02
.0

3.
28

20
03

.1
2.

17
20

05
.0

9.
07

20
07

.0
5.

29
20

09
.0

2.
18

20
10

.1
1.

04
20

12
.0

7.
25

P
er

ce
nt

Absolute changes squared

0

0.02

0.04

0.06

Date

20
00

.0
7.

03
20

02
.0

3.
28

20
03

.1
2.

17
20

05
.0

9.
07

20
07

.0
5.

29
20

09
.0

2.
18

20
10

.1
1.

04
20

12
.0

7.
25

P
er

ce
nt

Relative changes squared

Figure 2. Changes in US dollar interest rate swap rates.

statistical model. To use these measures for ranking rival functional forms we have to make as-
sumption about unconditional distribution that the data under the two alternative representation
have to satisfy.

While the most common kind of distributional assumption is that of normality, financial time-
series are notorious for their non-normality, so we are not even going to try normal distribution
as the null.4 Instead, we will be using location-scale Student 𝑡 distribution. In this case, the
hypothesis of difference representation is

(3.1) Δ𝑟௧ ∼ 𝑡 ൫𝜇ௗ , 𝜎ଶௗ , 𝜈ௗ൯ ,

while that of return representation is

(3.2)
Δ𝑟௧
𝑟௧ିଵ

∼ 𝑡 ൫𝜇௥ , 𝜎ଶ௥ , 𝜈௥൯ .

Thus, the idea here is to produce goodness-of-fit measures and compare them across the two
representations. Importantly, one has to select measures that are invariant with respect scale
and location, which excludes a number of popular measures such as root mean square error.
Below we explore the utility of few common ones.

4p-value of the null of normality for a one-year sample using either representation is on the order of ଵ଴షఱబ .
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3.1.1. Pearson's χ2 Statistics. The Pearson’s goodness-of-fit statistics is one of the best known
ways to evaluate the agreement between fitted and empirical distributions. It is given by

(3.3) 𝑃 (𝑔) =
௚

෍
௜ୀଵ

(𝑛௜ − 𝔼𝑛௜)ଶ

𝔼𝑛௜
,

where 𝑔 is a number of cells, 𝑛௜ is the number of observations in cell 𝑖, and 𝔼𝑛௜ is the expected
number of observations (based on maximum likelihood estimates). For i.i.d. observations the
asymptotic distribution of 𝑃(𝑔) under the null of correct distribution is 𝜒ଶ௚ି௞ିଵ where 𝑘 is the
number of independent parameters fitted. This test is in fact equivalent to an in-sample density
forecast test (Diebold, Gunther, and Tay, 1998). The Pearson’s statistics is therefore ”small” when
all of the observed counts (proportions) are close to the expected counts (proportions) and it is
”large” when one or more of the expected proportions deviates notably from what is expected
under the null hypothesis of the two distributions being the same. The choice of the number of
cells used to evaluate the statistics is far from obvious. Palm and Vlaar (1997) propose 𝑔 = 50
when the number of observations is 2,252, and suggest that the number of cells increase at the
rate 𝑁଴.ସ. In consequence, we use floor ൫2.28𝑁଴.ସ൯ as our preferred cell size.

3.1.2. Information Criteria. Information criteria are grounded in the concept of entropy, in effect
offering a relative measure of the information lost when a given model is used to describe reality.
Information criteria can be said to describe the tradeoff between bias and variance in model
construction, or, loosely speaking, between precision and complexity of the model. Information
criteria make direct use of the maximum likelihood estimates of the fitted distribution, thus they
directly judge which distribution within a parametric family is more likely to have generated the
data. Alternative information criteria differ in the way they penalize the number of parameters.
Since the number of parameters in (3.1) and in (3.2) is the same, the choice among different
information criteria does not matter. Reported results use the Akaike Information Criterion with
correction for finite sample size (Brockwell and Davis, 1998).

3.1.3. Kolmogorov-Smirnov-Lilliefors and Anderson-Darling Tests. The Kolmogorov-Smirnov test
(KS test) is a non-parametric test of equality of one-dimensional probability distributions used
to compare a sample with a reference probability distribution. The Kolmogorov-Smirnov statistic
quantifies a distance betweenthe empirical distribution function of the sample andthe cumulative
distribution function of the reference distribution. The null distribution of this statistic assumes that
the sample is drawn from the reference distribution.

The Kolmogorov-Smirnov test can be modified to serve as a goodness-of-fit test. However,
if the reference distribution is estimated instead of being specified in advance, the p-values are
incorrect. Correcting the Kolmogorov-Smirnov test for this bias when the parameters estimated
are parameters of scale and location leads to the Lilliefors family of tests (Lilliefors, 1967). Adjust-
ments are specific to a chosen scale-location family of distributions and have not been developed
in the literature for the Student 𝑡 distributions (with pre-specified degrees of freedom). It is also
known that using the sample to modify the null hypothesis reduces the power of a test.

An alternative to the Kolmogorov-Smirnov-Lilliefors test is the Anderson-Darling statistics that
weighs the squared distance between the empirical and the reference cumulative distribution
functions by the inverse of its variance, emphasizing more the tails of the distributions than the



12 SERGEI MOROZOV

Kolmogorov-Smirnov distance. The Anderson-Darling test can also serve as a goodness-of-fit-
test and needs similar bias adjustments to enable testing when the reference distribution is from
a location-scale family with estimated location-scale parameters.

Since bias correction for both tests only works for location-scale families and depends on the
shape of the reference distributions, we set the degrees of freedom parameter 𝜈 = 5 (implying
finite first four moments) and derived the critical values of Kolmogorov-Smirnov-Lilliefors and
Anderson-Darling tests by Monte Carlo simulation. Application of these tests to the interest rate
swap data is documented in section 3.1.6.

3.1.4. Histogram Binning. Parametric goodness-of-fit tests above describe the difficulty of co-
ercing the sample into the straightjacket of a parametric form. Non-parametric methods are
commonly used to unfetter the data from such constraints by substituting the divine insight of
knowing the distributional form of the data generating process up to a finite number of unknown
parameters with less forceful assumptions such as smoothness or local shape restrictions. An ex-
plicit advantage of non-parametric methods is the recognition that fitted models are inherently
misspecified approximations. Increasing complexity or reducing the degree of smoothness of a
fitted model tends to decrease the misspecification bias at the cost of inflating the estimation
variance. Non-parametric methods make the complexity of the fitted model depend upon the
sample in a way that balances this trade-off. Non-parametric models are typically indexed by a
tuning parameter which controls the degree of complexity. One such parameter that originated
in coding and information theory is the stochastic complexity. This metric is defined, relative to a
collection of models, as the fewest number of bits in a probabilistic sense with which the data can
be encoded using a code designed by help of the models in the class.5 A simple class of models
admitting a particular elegant formulation in terms of stochastic complexity is that of histograms.
Histograms are “minimalist” in terms of the degree of smoothing as they have a finite number of
“steps” and associated discontinuities. Compared to kernel methods, histograms have a lesser
tendency to underestimate the peaks of the sampling density. They are also the oldest and most
commonly used. Here, unknown parameters represent the number and locations of bins. Since
with large enough number of bins histograms can fit almost anything, the problem of determining
the number of parameters is precisely that of choosing the model complexity that is required to
achieve a satisfactory fit.

Considering all possible partitions of the real line to support every conceivable kind of irregular
histogram requires computationally heavy and intricate search procedures that destroy much of
the benefit of bias reduction. For this reason, we limit our exploration of histogram binning to
the two kinds of regular histograms – regular histograms with equal binwidth and equi-depth
histograms with equal probability in each bin. Among many binwidth estimators for the regular
histograms we have chosen an estimator due to Hall and Hannan (1988) based on stochastic
complexity as the outcomes with other penalized likelihood estimators were similar. For the
equi-depth histogram binning, we used the likelihood cross-validation approach, correcting for
duplicate observations.6 We complement these two with an irregular histogram estimator of
Kumar, Heikkonen, Rissanen, and Kaski (2006) that represents a piecewise constant function

5Further examples of such tuning parameters include kernel bandwidth, modulator of orthogonal basis decomposition,
wavelet shrinkage parameters, etc. See Wasserman (2006).

6Equi-depth histograms are naturally linked to ௞-nearest neighbor density estimators. Ignoring inexact divisibility
of the sample size into an integer number of equally-sized bins, the question of the optimal number of bins can be
reformulated as the problem of finding the optimal number of neighbors, ௞. This problem has been studied in the literature.
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derived from an expansion within the Haar wavelet basis. This estimator is described in appendix
A. In general, wavelet-based density estimators feature local adaptation that imparts an ability
to remove noise without compromising sharp details of the original signal. This can be useful
to neutralize boundary biases that tend to beleaguer the other two estimators. Unfortunately,
sample variability of all three is an endemic concern.

The outcomes of the three binning procedures are discussed in section 3.1.6.

3.1.5. Probability Integral Transform of Density Forecast. An obvious limitation of the foregoing
measures is their emphasis onthe in-sample fit. This limitation may be an important consideration
for risk measurement applications where the predictive ability of different models is a key concern.
In order to attend to this requirement, we add an assessment of the out-of-sample performance
to our list of measures. The assessment is based on the probability integral transform of the
density forecast.

In plain language, the probability integral transform assigns a model-based probability value
to an out-of-sample realization. In a perfect world, these p-values are uniformly distributed on
the [0, 1] interval and such distributional equivalence can be formally tested.

We put the above schematic into practice as follows. For each alternative functional form, we
form an empirical density estimate based on a fixed window of data. The p-value of the first
out-of-sample observation following the window can be estimated by its magnitude relative to
the in-sample observations. The window is then rolled forward, and the next empirical density
estimate is formed. The process is initiated using the earliest sub-sample of the sample under
consideration and continues until the entire dataset is exhausted. In line with statistics described
in previous sections, we use one year and four year sub-samples over the full sample as well as
over the last four years. The distributional equivalence of generated predictive p-values to the
standard uniform distribution is tested by means of the Pearson 𝜒ଶ statistics already described.

To expand the range of possibilities beyond absolute and proportional changes, we also test
distributional equivalence for measures of change of the form ୼௥೟

௥ം೟షభ
for all 𝛾 ∈ [−1, 2] and charac-

terize 𝛾∗ that gives rise to the highest p-value. The idea here is to judge closeness of the optimal
𝛾 to zero or one as an indication of preference for the difference specification corresponding to
𝛾 = 0 or the return specification corresponding to 𝛾 = 1. Since such procedure does not deliver
confidence bounds about the optimal 𝛾 and does not constitute a nested test, its results have to
be regarded somewhat informally. These results are discussed in section 3.1.6.

3.1.6. Empirical Results. Across the entire 12 year of data, goodness-of-fit measures sharply
reject the Student 𝑡 hypothesis for the unconditional distribution of both absolute and relative
changes, indicating difficulty of fitting simple parametric models to financial time-series. In spite

Mack and Rosenblatt (1979) showed that in the univariate case the optimal choice involves balancing

ୠ୧ୟୱ ൫ෝ௙ೖಿಿ(௫)൯ ∝
௙ᇴ(௫)
௙(௫)

௞మ
்మ ା ை൭ቆ௞் ቇ

య
൱

with

୴ୟ୰ ൫ෝ௙ೖಿಿ(௫)൯ ∝
(௙(௫))మ

௞ ା ௢ ቆ ଵ௞ ቇ

for the unknown true density ௙ (௫). Using standard reference densities with infinite support to minimize integrated MSE
leads to divergent integrals and ௞೚೛೟ → ஶ. Using reference densities with finite support opens up the quandary of having
to specify the support bounds and may produce perplexing results such as those of Orava (2012) where ௞೚೛೟ does not
depend on any sample statistics and may exceed the sample size. To circumvent this predicament, we gave likelihood
cross-validation a go in order to derive ௞೚೛೟ and, by implication, ஻೚೛೟ .
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of the overwhelming rejection, these measures tend to favor the difference form. Similarly, the
Akaike information criterion, while silent about any degree of absolute fit, also supports difference
formulation for all maturities. In the 4-year sample, returns specification achieves acceptable and
fit for maturities over three years. The fit is better than that of the differences for all maturities
with the sole exception of the Pearson’s 𝜒ଶ at 3-year maturity. The AIC reinforces the preference
for returns except for 2-year and 30-year maturities. Similar conclusions can be made about the
most recent year of data where returns fit well and better than differences at all maturities over
three years. For these maturities, the AIC results are also in agreement. For shorter maturities
there is a mild disagreement amongst different measures as well as deterioration of the absolute
fit.

Histogram binning results are inconclusive, with disagreements between different methods as
to the best choice at any given maturity in any of the three subsamples.

As regards predictive p-values, as shown separately in Table 5, results signal mild preference
for return specification when using either four year or one year estimation window in the full
sample, except for longer maturities and the short estimation window. Using last four years as
a testing ground for predictive p-values using one year estimation window is also in favor of
return formulation. Optimal 𝛾 leads to inconclusive inferences except for the short estimation
sub-samples over the most recent four years.

Even with a disagreement across different measures, the widespread divergence of functional
form conclusions between the full sample and more recent sub-samples is meaningful since the
obvious distinction between the full sample and the more recent ones is that the full sample
contains a larger proportion of higher interest rates. The theme of dependence of the functional
form choice on the level of interest rates will be revisited several times in the sections that follow.

3.1.7. Critique. Goodness-of-fit measures provide tenuous basis for functional form comparison
for a number of reasons. Fitting a parametric unconditional distribution to either proportional or
absolute change representation amounts to assuming that the sample is drawn i.i.d. from the
reference distribution. Emphatic rejections in tests relying on parametric assumptions for both
representations provide no way to tell apart failure of parametric fit from the violations of the i.i.d.
assumption. Strong rejection of both representations does not instill measurable confidence in
the preference for whatever form happened to have a better, yet still failing, measure of fit. And
over moderately long horizons sharp rejections of fit to a simple distribution are almost inevitable
for most daily financial time-series. At the other extreme, fitting very complex unconditional
distributions may result in excellent in-sample fit for both representations but lead to a failure
out-of-sample. Fitting complex model will likely produce very different models for the two repre-
sentation and will make non-nested model comparison even more dubious. Finally, even when
the differences in fit are pronounced, the test statistics need to be carefully adjusted for bias
when parameters of the reference distribution are themselves estimated, which is not always
straightforward.

Although measures introduced in sections 3.1.4 and 3.1.5 are not susceptible to the choice of
incorrect parametric distribution, it is of little consolation as their guidance is still inconclusive as
both forms are rejected and best-fit elasticities are far away from zero or unity.

3.2. Unit Root Tests. Unit root tests are considered a staple component of a suite of stationarity
tests. But for risk measurement purposes they must be treated with caution. The reason for the
caution is threefold. First, unit root tests are designed to capture first order non-stationarity. That is,
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Swap Maturity Statistic
Full sample 4-year sample 1-year sample

Diff Ret Diff Ret Diff Ret

Pearson ఞమ 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1y AIC 11126.37 12049.20 3815.7159 3254.07 816.89 814.99

Kolmogorov-Smirnov-Lilliefors 0.000010 0.000009 0.000020 0.000044 0.000271 0.000233
Anderson-Darling 0.000100 0.000100 0.000100 0.002100 0.002700 0.006900

Pearson ఞమ 0.000000 0.000000 0.004207 0.004748 0.000000 0.955873
2y AIC 10566.59 11438.23 3737.5613 3272.31 847.78 849.78

Kolmogorov-Smirnov-Lilliefors 0.000065 0.000062 0.000067 0.000139 0.000549 0.000716
Anderson-Darling 0.000600 0.000100 0.000500 0.019200 0.005000 0.017900

Pearson ఞమ 0.000000 0.000000 0.096554 0.000000 0.000000 0.066455
3y AIC 10255.72 11152.53 3604.1453 3277.36 883.35 859.21

Kolmogorov-Smirnov-Lilliefors 0.000189 0.000076 0.000197 0.000342 0.000415 0.000507
Anderson-Darling 0.001700 0.000200 0.001600 0.066200 0.004000 0.022100

Pearson ఞమ 0.000000 0.000000 0.006312 0.410597 0.000000 0.255325
4y AIC 10094.63 10893.88 3466.5580 3250.51 877.67 840.97

Kolmogorov-Smirnov-Lilliefors 0.000307 0.000178 0.000574 0.001245 0.000513 0.021905
Anderson-Darling 0.002900 0.000500 0.005300 0.266000 0.006800 0.090500

Pearson ఞమ 0.000000 0.000319 0.001079 0.157838 0.000000 0.675605
5y AIC 10028.64 10726.47 3432.5816 3244.25 859.82 819.45

Kolmogorov-Smirnov-Lilliefors 0.000339 0.000300 0.001343 0.001958 0.003545 0.070858
Anderson-Darling 0.003700 0.000800 0.009500 0.236100 0.023900 0.324000

Pearson ఞమ 0.000000 0.000001 0.000009 0.000280 0.000004 0.010249
7y AIC 9887.32 10549.19 3351.0533 3201.78 818.76 783.84

Kolmogorov-Smirnov-Lilliefors 0.000296 0.000306 0.001427 0.001274 0.067961 0.103722
Anderson-Darling 0.003800 0.001200 0.023200 0.119600 0.132000 0.201700

Pearson ఞమ 0.000000 0.019104 0.000000 0.021652 0.003218 0.032559
10y AIC 9886.23 10520.87 3322.3569 3249.78 812.72 780.64

Kolmogorov-Smirnov-Lilliefors 0.000258 0.000209 0.001819 0.001953 0.031502 0.151916
Anderson-Darling 0.003100 0.001200 0.024300 0.121200 0.192800 0.203300

Pearson ఞమ 0.000000 0.000326 0.020735 0.137334 0.246047 0.361616
30y AIC 9807.73 10573.16 3281.5881 3340.43 810.04 788.14

Kolmogorov-Smirnov-Lilliefors 0.000250 0.000239 0.001165 0.009653 0.172425 0.353523
Anderson-Darling 0.002600 0.000800 0.020300 0.081300 0.240100 0.309200

Table 1. P-values of Kolmogorov-Smirnov-Lilliefors, Anderson-Darling and
Pearson’s goodness-of-fit measures under Student 𝑡 null, and the Akaike In-
formation Criterion corrected for finite sample size.

the tests outcomes provide or deny support for whether the series (already in return or difference
form) need to be differenced further. As a consequence, none of the second- or higher-order
non-stationarity may be reflected in the test outcomes. Second reason is a technical one. Unit
root test tend to have low power against many similar alternatives, especially in small samples.
In other words, unit root tests provide a fairly dim lens to study the properties of the data and
have hard time distinguishing the null and alternative hypotheses. Third, unit root tests provide
no rigorous basis for comparison across different functional form specifications, because the two
rival functional form hypotheses are not nested, and distributions of tests statistics may involve,
for example, a choice of the number of lags, with the diametrically opposite ranking achieved
depending on that number of lags.
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Swap Maturity
Full sample 4-year window 1-year Window

Diff Ret Diff Ret Diff Ret
஻∗ ஼∗ ஻∗ ஼∗ ஻∗ ஼∗ ஻∗ ஼∗ ஻∗ ஼∗ ஻∗ ஼∗

1y 8 -4173.33 11 -4118.90 9 -1490.76 9 -942.40 4 -218.21 5 -151.95
2y 18 -3499.33 12 -4144.51 9 -1264.21 10 -1013.97 5 -176.47 7 -199.70
3y 16 -3207.59 8 -4219.48 16 -1193.41 8 -1077.54 5 -234.69 5 -216.81
4y 15 -3269.55 12 -4226.24 15 -1131.10 13 -1045.31 5 -218.78 7 -196.46
5y 14 -3215.64 13 -3822.86 14 -1075.93 14 -941.95 5 -209.46 7 -180.98
7y 13 -3280.31 10 -3825.31 12 -998.44 10 -908.52 4 -158.73 9 -136.89
10y 14 -3271.28 8 -3823.79 14 -964.79 8 -932.14 13 -129.72 16 -102.39
30y 10 -3096.63 9 -4065.60 10 -875.36 9 -970.32 8 -132.80 6 -138.52

Table 2. Optimal number of bins and stochastic complexity of equi-width histogram.

Swap Maturity
Full sample 4-year window 1-year Window
Diff Ret Diff Ret Diff Ret

1y 77 88 41 32 6 16
2y 70 169 48 54 5 21
3y 69 166 54 61 13 32
4y 75 106 46 73 16 31
5y 71 113 43 77 10 28
7y 78 130 10 67 9 27
10y 13 124 57 109 5 61
30y 10 126 16 98 7 42

Table 3. Optimal number of bins in equi-depth histogram.

Swap Maturity
Full sample 4-year window 1-year Window

Diff Ret Diff Ret Diff Ret
஻∗ ஼∗ ஻∗ ஼∗ ஻∗ ஼∗ ஻∗ ஼∗ ஻∗ ஼∗ ஻∗ ஼∗

1y 2 -280973 2 -278845 5 -62818 12 -61587 19 -9152 15 -8981
2y 2 -278206 2 -279672 8 -63139 7 -65637 15 -9005 13 -8998
3y 2 -276422 2 -281704 8 -64198 8 -63622 9 -9510 9 -9222
4y 2 -277025 2 -280594 7 -67178 8 -62767 8 -10401 8 -9290
5y 2 -277456 2 -279889 7 -65063 8 -62183 8 -9985 8 -9275
7y 2 -277980 2 -280820 6 -63943 7 -62120 8 -9209 8 -10082
10y 2 -278486 2 -281558 6 -63707 7 -62517 8 -8642 7 -8833
30y 2 -279198 2 -281644 6 -65008 7 -63372 9 -8531 10 -8645

Table 4. Optimal number of retained wavelet coefficients and minimum de-
scription length.

These arguments should not be viewed as a denunciation of tests of first order stationarity.
For example, it would still make sense to test the series for breaks and regime switches, with the
functional form representation experiencing fewer of those beingthe preferred one. Unfortunately,
the development of tests along these lines remains to be formally implemented. The rudimentary
attempts at regime modeling involve judgments about the sample period selection, and trying
to distinguish long swings of upward drift in the series (e.g. “rising rates regime”) from similarly
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Swap Maturity
4y subsamples of full sample 1y subsamples of full sample 1y subsamples of 4y sample
Diff Ret ఊ∗ Diff Ret ఊ∗ Diff Ret ఊ∗

1y -468.854 -185.658 0.394 -53.456 -63.221 -0.681 -152.604 -63.696 1.999
2y -297.041 -45.698 0.394 -37.271 -20.200 -0.860 -83.199 -26.340 2.000
3y -224.632 -80.888 0.341 -25.102 -24.895 -0.391 -58.186 -25.722 2.000
4y -98.589 -58.498 0.394 -10.718 -21.337 0.000 -39.993 -12.716 1.996
5y -77.543 -56.962 0.400 -7.244 -18.513 -0.690 -14.225 -14.806 1.987
7y -62.625 -72.247 0.403 -9.791 -27.027 -0.538 -7.273 -12.532 1.982
10y -71.955 -90.385 0.397 -4.505 -14.770 -0.621 -12.840 -1.982 2.000
30y -114.656 -79.027 0.394 -15.586 -33.904 -0.533 -9.160 -6.877 2.000

Table 5. Log p-values of Pearson’s 𝜒ଶ test for the distributional equivalence of
predictive p-values to the standard uniform distribution and best-fit elasticity of
volatility.

persistent declines (“declining rates regime”). Still, the focus on volatility regimes has to dominate
once the issues of mean trend breaks and mean regime switches are addressed.

Out of curiosity, we ran KPSS tests (Kwiatkowski, Phillips, Schmidt, and Shin, 1992) (with
quadratic spectral kernel) on returns and differences of all interest rate swap series under study
with results reported in Table 6. The maximum lag order (bandwidth) was derived from an
automatic bandwidth selection procedure recommended in Hobijn, Franses, and Ooms (2004).
We also used Monte Carlo simulations in order to expand the range of critical values tabulated
in Kwiatkowski, Phillips, Schmidt, and Shin (1992). Expanded range is shown in appendix B.

Except for the shortest maturities over the entire 12 years of data, unit root is not a problem
for either yield returns or yield differences. Proportional change representation tends to perform
better with only exceptions being 30-year maturity over the full sample and up to 2-year matu-
rities over 1-year sample while the lag choice does not seem to matter for our dataset. Even so,
the difference specification is competitive for most maturities and subsamples and we cannot tell
whether differences in test p-values are sufficiently significant to express confident preference in
favor of returns.

3.3. Homoscedasticity Tests. Testing for second order stationarity means to assess equality of
the second moments over time. As second moments are not observed, they must be estimated
by either linking them to observables in a time-series model specification or by partitioning the
time domain into various subsets. These subsets can be either identified directly by defining a
method to group observations over time, or indirectly through the values of another pre-defined
explanatory variable.

The tests below give examples of all three methods and are not meant to be exhaustive.

3.3.1. Levene Equality of Variances Test. Generic Levene F-test (Levene, 1960), in its original
formulation or a more robust version due to Brown and Forsythe (1974), is used to assess equality
of variances across different samples. Associating different subsamples of returns or difference
series with different time windows leads to what we call time heteroscedasticity test. Associating
instead with different values of the level series produces level heteroscedasticity test. The latter
formulation is also known as Goldberg-Quandt parametric test (Goldfeld and Quandt, 1965).
The test results for both formulations are shown in Table 7. In both cases, the two groups of
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Swap Maturity Form
Lags Optimal

1 2 3 4 5 6 10 Lags

Full sample
Diff 0.000004 0.000005 0.000006 0.000006 0.000007 0.000007 0.000021 6

1y Ret 0.022855 0.022970 0.022140 0.021390 0.020469 0.020000 0.022658 6
Diff 0.002513 0.002480 0.002353 0.002196 0.002005 0.001861 0.002067 6

2y Ret 0.185120 0.177170 0.173270 0.171170 0.166110 0.160540 0.160360 6
Diff 0.023341 0.022311 0.021280 0.020253 0.018923 0.017837 0.018358 6

3y Ret 0.262780 0.248710 0.244560 0.245530 0.243920 0.238410 0.239120 6
Diff 0.071480 0.068252 0.064374 0.060721 0.056459 0.052660 0.052349 6

4y Ret 0.272020 0.260550 0.256170 0.254560 0.251100 0.244730 0.240280 6
Diff 0.149600 0.141800 0.133340 0.126420 0.118470 0.111700 0.107100 6

5y Ret 0.296190 0.281290 0.274890 0.270480 0.263990 0.255470 0.247270 6
Diff 0.259610 0.248780 0.238810 0.230970 0.221950 0.214330 0.207140 6

7y Ret 0.340640 0.320980 0.309010 0.300250 0.292040 0.283320 0.274930 6
Diff 0.404290 0.391740 0.380620 0.370270 0.359130 0.350270 0.338520 6

10y Ret 0.442310 0.424370 0.409900 0.397050 0.383700 0.370720 0.356280 6
Diff 0.636610 0.618300 0.600110 0.587000 0.574840 0.566790 0.558070 6

30y Ret 0.633820 0.612030 0.589770 0.574020 0.558080 0.543560 0.537250 6
4-year sample

Diff 0.106150 0.096609 0.093189 0.089152 0.089297 0.091301 0.100670 5
1y Ret 0.559710 0.550930 0.536670 0.521470 0.505360 0.495610 0.512000 5

Diff 0.310050 0.282250 0.278050 0.263840 0.238230 0.215930 0.198030 5
2y Ret 0.784610 0.767440 0.764380 0.762490 0.754840 0.745630 0.738970 5

Diff 0.433720 0.384360 0.380320 0.372620 0.349660 0.325590 0.301490 6
3y Ret 0.658480 0.632390 0.631590 0.638660 0.640920 0.634400 0.627840 5

Diff 0.481650 0.442810 0.441050 0.433380 0.409860 0.388650 0.366460 4
4y Ret 0.572660 0.548970 0.547310 0.549080 0.545300 0.535730 0.518300 6

Diff 0.491810 0.447770 0.449670 0.443930 0.421420 0.399820 0.380960 5
5y Ret 0.544080 0.510180 0.508030 0.505200 0.495120 0.481760 0.462120 5

Diff 0.454350 0.410860 0.413950 0.411870 0.394080 0.378740 0.362910 5
7y Ret 0.509610 0.476650 0.468680 0.461060 0.444650 0.426490 0.404860 5

Diff 0.398110 0.367960 0.370070 0.367690 0.351180 0.335910 0.318360 5
10y Ret 0.484390 0.457910 0.447700 0.435960 0.413050 0.392250 0.371410 5

Diff 0.228330 0.199130 0.194340 0.190380 0.181540 0.174000 0.173110 5
30y Ret 0.354730 0.326360 0.304760 0.292370 0.277430 0.262240 0.260610 5

1-year sample

Diff 0.612150 0.636460 0.660250 0.674800 0.689680 0.700940 0.670450 6
1y Ret 0.645210 0.646360 0.652970 0.657940 0.660850 0.662580 0.627940 6

Diff 0.469600 0.501550 0.536470 0.592200 0.634880 0.657010 0.654730 6
2y Ret 0.449260 0.482880 0.506310 0.564860 0.601410 0.621170 0.612360 6

Diff 0.192960 0.220940 0.244280 0.287430 0.324370 0.342920 0.360930 6
3y Ret 0.217210 0.251330 0.273840 0.315770 0.352810 0.369950 0.374680 6

Diff 0.147490 0.169660 0.180340 0.198460 0.213110 0.221120 0.229250 6
4y Ret 0.177080 0.197160 0.214990 0.237860 0.247980 0.251890 0.241120 6

Diff 0.140960 0.154930 0.163260 0.170870 0.172320 0.170560 0.170570 6
5y Ret 0.182340 0.194050 0.201480 0.207270 0.202750 0.196580 0.182530 6

Diff 0.132870 0.139680 0.136490 0.126790 0.116860 0.108880 0.099978 6
7y Ret 0.192050 0.196650 0.189540 0.175500 0.159900 0.146240 0.120090 6

Diff 0.124180 0.128480 0.117460 0.097393 0.085696 0.076800 0.065579 6
10y Ret 0.189430 0.193740 0.179270 0.153810 0.124340 0.099253 0.080132 6

Diff 0.102830 0.097702 0.081707 0.062923 0.048584 0.040520 0.029107 6
30y Ret 0.178200 0.173990 0.142680 0.105900 0.086024 0.066859 0.044128 6

Table 6. P-values of KPSS unit root test.
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Time Heteroscedasticity

Swap Maturity Form
Full sample 4-year sample 1-year sample

F stat p-value F stat p-value F stat p-value

Diff 109.05 0.000000 82.98 0.000000 0.00 0.000000
1y Ret 206.77 0.000000 1.18 0.278357 1.36 0.243887

Diff 151.77 0.000000 144.66 0.000000 0.00 0.000000
2y Ret 94.71 0.000000 1.30 0.253920 1.53 0.217077

Diff 64.93 0.000000 229.74 0.000000 27.49 0.000000
3y Ret 131.14 0.000000 3.28 0.070474 13.87 0.000242

Diff 75.45 0.000000 101.27 0.000000 16.88 0.000054
4y Ret 151.45 0.000000 0.08 0.227002 11.85 0.000674

Diff 57.92 0.000000 88.75 0.000000 14.22 0.000203
5y Ret 128.17 0.000000 0.09 0.237606 2.91 0.089530

Diff 0.00 0.000000 32.58 0.000000 22.11 0.000004
7y Ret 138.63 0.000000 0.24 0.374037 13.45 0.000299

Diff 0.00 0.000000 51.15 0.000000 11.55 0.000786
10y Ret 106.79 0.000000 1.09 0.297518 5.69 0.017791

Diff 68.09 0.000000 53.40 0.000000 12.13 0.000586
30y Ret 177.00 0.000000 7.05 0.008047 0.97 0.325649

Level Heteroscedasticity
Diff 213.29 0.000000 162.69 0.000000 0.00 0.000000

1y Ret 871.32 0.000000 2.29 0.130461 2.31 0.129630
Diff 127.95 0.000000 144.58 0.000000 0.00 0.000000

2y Ret 454.80 0.000000 1.94 0.163749 1.04 0.309264
Diff 0.00 0.000000 237.59 0.000000 23.89 0.000002

3y Ret 515.82 0.000000 0.66 0.417222 4.35 0.037948
Diff 0.00 0.000000 70.80 0.000000 4.45 0.035987

4y Ret 502.13 0.000000 13.36 0.000271 0.01 0.095879
Diff 0.00 0.000000 100.17 0.000000 3.52 0.061665

5y Ret 439.28 0.000000 7.65 0.005788 0.08 0.224863
Diff 73.17 0.000000 39.92 0.000000 10.93 0.001087

7y Ret 390.65 0.000000 27.01 0.000000 0.00 0.047020
Diff 69.04 0.000000 0.00 0.000000 9.19 0.002688

10y Ret 296.53 0.000000 35.43 0.000000 0.09 0.235839
Diff 73.92 0.000000 0.00 0.000000 1.45 0.230323

30y Ret 261.77 0.000000 43.39 0.000000 0.33 0.435341

Table 7. Levene-Brown-Forsythe and Goldfeld-Quandt test results.

observations are the first and the last third of the sample in order to improve the power of the
test.

Homogeneity of variance between first and last four years of the full 12 year sample is un-
equivocally denied by the test, while homogeneity between observations corresponding to high
interest rates and observations corresponding to low rates is rejected even more categorically.
Returns tend to do worse by both methods. In the shorter subsamples, the evidence is less deci-
sive with relative change formulation not rejected by the first test for most of maturities in the four
year sample as well as by the second test for short maturities in the four year sample and most
maturities in the one year sample. Even when the return specification is rejected, the rejection is
less pronounced than that for the difference alternative.
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3.3.2. Non-parametric Goldfeld-Quandt Test. Levene-Brown-Forsythe and parametric Goldfeld-
Quandt tests, though reasonably robust, may still be sensitive to non-normality, especially under
conditions where samples are collected from population distributions that are skewed (Nord-
stokke and Zumbo, 2010). They also rely on asymptotic large-sample approximations. The
non-parametric Goldfeld-Quandt test (Goldfeld and Quandt, 1965) is an exact test robust to
non-normality. In this test the absolute values are sorted in ascending order according to pre-
defined explanatory “deflator” variable , and the test statistics is the number of observations that
exceed all previous observations (“peak” observations)

Test results are shown in Table 8.7 Low power of the test is evident in fairly inconsistent
conclusions between the case when the explanatory variable is time and the case when the
level of the series serves as a covariate, as well as in a number of ties. Using time as the
sorting variable, the test favors the difference specification over the full sample and its four year
subsample but is inconclusive in the one year sample. Using level as the sorting variable, the test
generally favors the return specification, albeit with a number of exceptions.

The weakness of this test is the requirement to order absolute residuals according to a known
explanatory variable. If the heteroscedasticity structure depends on the unknown or latent vari-
able, the test offers little guidance. Another major shortcoming is that the variance must be a
monotonic function of explanatory variable. For example, when faced with a quadratic function
mapping a deflator to the variance, the test might improperly accept the null of homoscedastic-
ity. We suspect that relatively high p-values in Table 8 can be explained by such non-monotone
behavior. Lastly, the test only allows a single sorting covariate.

3.3.3. Information Matrix Test. Variance homogeneity tests in sections 3.3.1 and 3.3.2 point to
the association of volatility with the level of the series. A regression context might be useful to
provide further details. Information matrix test (Cameron and Trivedi, 1990) may be particularly
illuminating since it could be decomposed into tests for conditional heteroscedasticity, conditional
non-normal skewness and conditional non-normal kurtosis via three auxiliary regressions involv-
ing powers of residuals against potential drivers of heteroscedasticity (e.g., level of the series).8

We performed information matrix tests using lagged level as an explanatory factor and dis-
played the test statistics in Table 9. To conserve space, only test statistics are displayed.9 Overall,
it appears that conditional skewness is not an issue and conditional kurtosis is only moderately
severe. On the other hand, conditional heteroscedasticity is very strong in the full sample and
remains elevated in the shorter subsamples. Ranking the two alternatives according to the 𝐼𝑀ଶ
statistics, we observe again that in the full sample the difference form is preferred, while for the
1-year sample it is returns that display lower heteroscedasticity. Over the 4-year sample, returns
also dominate except for 30 year rates.

Comparing with the earlier heteroscedasticity tests we find complete consensus for 5- and
7-year maturities in both recent subsamples and for 30-year maturity in 1-year subsample.
Notable disagreement among different tests arises for 2-year and 10-year maturities in the long

7Exact p-values were obtained from ௉ (ே௨௠௕௘௥ ௢௙ ௣௘௔௞௦ ஸ ௞) ୀ భ
೅! ∑

ೖశభ
೔సభ |ௌ(೔)೅ | where ௌ(೔)೅ are Stirling numbers

of the first kind (Abramowitz and Stegun, 1965).
8Specifically, ூெ ୀ ூெమ ା ூெయ ା ூெర ୀ ∑ర೔సమ ்ோమೠ೙,೔, where ோమೠ೙,మ is uncentered ோమ from a regression of squared

residuals against a full quadratic form in explanatory variable(s), ோమೠ೙,య comes from a regression of a cubic function of
residuals against a full linear form in explanatory variables, and ோమೠ೙,ర is from a regression of a quartic function of residuals
against a constant term. With a single explanatory factor each ூெ೔ is asymptotically ఞమభ .

9For comparison, ఞమభ critical values are 3.841 at 5%, 6.635 at 1% and 10.827 at 0.1%.
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Time Heteroscedasticity

Swap Maturity Form
Full sample 4-year sample 1-year sample

Peaks p-value Peaks p-value Peaks p-value

Diff 4 0.1142 6 0.4743 5 0.4031
1y Ret 13 0.0188 9 0.1102 4 0.4093

Diff 3 0.0479 8 0.1967 4 0.4093
2y Ret 13 0.0188 10 0.0565 4 0.4093

Diff 5 0.2195 6 0.4743 4 0.4093
3y Ret 15 0.0035 12 0.0115 5 0.4031

Diff 6 0.3570 6 0.4743 3 0.2305
4y Ret 12 0.0391 8 0.1967 5 0.4031

Diff 9 0.2258 7 0.3202 3 0.2305
5y Ret 11 0.0756 6 0.4743 3 0.2305

Diff 14 0.0084 9 0.1102 4 0.4093
7y Ret 15 0.0035 8 0.1967 4 0.4093

Diff 12 0.0391 7 0.3202 4 0.4093
10y Ret 12 0.0391 8 0.1967 5 0.4031

Diff 10 0.1358 5 0.3600 4 0.4093
30y Ret 13 0.0188 6 0.4743 4 0.4093

Level Heteroscedasticity
Diff 22 0.0000 20 0.0000 4 0.4093

1y Ret 9 0.2258 9 0.1102 3 0.2305
Diff 8 0.3467 6 0.4743 3 0.2305

2y Ret 4 0.1142 4 0.2103 2 0.0986
Diff 15 0.0035 14 0.0017 11 0.0037

3y Ret 8 0.3467 8 0.1967 8 0.0627
Diff 12 0.0391 12 0.0115 9 0.0269

4y Ret 9 0.2258 9 0.1102 9 0.0269
Diff 14 0.0084 14 0.0017 11 0.0037

5y Ret 9 0.2258 10 0.0565 9 0.0269
Diff 10 0.1358 10 0.0565 9 0.0269

7y Ret 9 0.2258 9 0.1102 8 0.0627
Diff 13 0.0188 13 0.0046 9 0.0269

10y Ret 10 0.1358 11 0.0266 9 0.0269
Diff 6 0.3570 6 0.4743 10 0.0104

30y Ret 5 0.2195 5 0.3600 8 0.0627

Table 8. Goldfeld-Quandt peaks test results.

sample, 10-year and 30-year maturities in the 4-year sample and at the short end of the curve
in the short sample. Lack of perfect agreement across tests is likely driven by inability of these
tests to detect non-monotone variation in volatility, especially as different tests fail detection in
different ways. We will revisit non-monotone variation in volatility relative to the level of the series
in the subsequent sections.

3.3.4. Engle's ARCH Test. Engle’s Lagrangemultiplier test (Engle, 1982) without covariates looks
for autoregressive patterns in the two bottom panels of Figure 2. Table 10 showsthe results when
the assumed autocorrelation is of the first order. In the full sample, the null of no autoregressive
conditional heteroscedasticity is soundly defeated albeit less so for returns at most maturities.
In the four year sample, returns are again preferred and the null is no longer rejected for some
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Swap Maturity Form
Full sample 4-year sample 1-year sample

IM ୍୑మ ୍୑య ୍୑ర IM ୍୑మ ୍୑య ୍୑ర IM ୍୑మ ୍୑య ୍୑ర

Diff 118.16 97.84 6.78 13.54 134.04 127.12 0.37 6.55 20.92 14.31 5.11 1.50
1y Ret 196.07 177.81 6.97 11.29 11.48 2.41 3.90 5.18 22.12 13.25 5.12 3.75

Diff 148.33 123.50 2.05 22.78 110.47 101.91 0.58 7.99 11.25 5.29 3.50 2.46
2y Ret 179.83 166.39 2.99 10.45 7.33 0.80 0.82 5.71 5.21 1.98 1.45 1.78

Diff 137.18 106.85 1.06 29.27 90.79 80.93 0.09 9.77 7.20 3.66 2.33 1.21
3y Ret 163.41 157.43 0.03 5.96 5.41 1.53 0.19 3.69 4.34 1.00 2.14 1.20

Diff 109.20 83.14 0.25 25.81 71.07 60.84 0.10 10.14 14.47 9.11 4.10 1.27
4y Ret 179.19 171.21 0.24 7.74 6.82 1.91 0.30 4.62 9.51 4.14 3.92 1.44

Diff 91.32 70.45 0.05 20.82 53.92 45.02 0.42 8.48 19.00 12.45 5.10 1.45
5y Ret 180.19 169.91 0.88 9.40 7.96 1.88 0.71 5.36 11.47 5.36 4.33 1.77

Diff 56.95 44.31 1.09 11.55 34.98 27.56 1.71 5.71 18.33 11.12 5.67 1.54
7y Ret 164.44 157.10 2.42 4.92 6.66 2.42 1.43 2.81 9.16 3.21 4.21 1.73

Diff 37.23 25.03 3.36 8.84 19.42 12.40 2.29 4.73 18.81 9.13 5.45 4.23
10y Ret 147.72 140.47 3.60 3.64 8.85 4.78 1.68 2.39 9.61 2.24 2.79 4.58

Diff 61.72 49.30 6.00 6.42 11.99 5.58 2.45 3.97 9.92 5.72 2.41 1.79
30y Ret 226.77 215.30 5.56 5.92 31.86 25.12 2.51 4.23 5.15 2.20 1.55 1.40

Table 9. Information matrix tests and their Cameron-Trivedi decomposition.

maturities. In the one year sample, both representations tend not to reveal much in a way of
autoregressive patterns in squared changes making the risk form selection ambiguous.

A particular weakness of ARCH model is the choice of the number of lags. Using model
selection criteria such as AICc typically results in excessively large number of lags. For our dataset
AICc-selected number of lags for different series varies between 30 and 54 using the full sample,
11 and 18 using the four year sample, and settles at 8 for all series using the one year sample.
Although not shown to conserve space, test comparisons using different number of lags (either
the same for all series or using optimal number for each series) often contradict the results of Table
10, rendering the choice of form erratic, arbitrary and not convincing. We do not recommend this
test for these reasons.

3.4. Mutual Information. Homoscedasticity tests in section 3.3 are, in effect, attempts to discern
patterns in volatility of daily changes as a function of the preceding level of the series. Although
evolving volatility is not directly observable, it could be estimated or, simpler yet, proxied by the
squared daily changes. Correlation between the squared daily changes and the preceding levels
can then be used as a simple indicator whether a linear pattern exists. The risk representation
with minimal such correlation exhibits weaker relationship and would be preferred. The problem
is that correlation would only capture linear comovements.

A more general approach to correlation is to determine how similar the joint distribution of
levels and changes is to the factored distribution of the two variables by means of their Kullback-
Leibler divergence, also known as the mutual information. For two random variables 𝑋 and 𝑌,
this quantity is defined as:

(3.4) 𝑀𝐼 (𝑋, 𝑌) ∶= ඵ
𝕏×𝕐

𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)𝑑𝑥𝑑𝑦 = ℋ (𝑋) +ℋ (𝑌) −ℋ (𝑋, 𝑌) ,

where ℋ (𝑋) and ℋ (𝑌) are the marginal entropies and ℋ (𝑋, 𝑌) is the joint entropy. It can
be interpreted as the reduction in uncertainty about 𝑋 after observing 𝑌. Since for correlated
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Swap Maturity Form
Full sample 4-year sample 1-year sample

Test stat p-value Test stat p-value Test stat p-value

Diff 75.90 0.000000 9.62 0.001925 0.01 0.926370
1y Ret 38.70 0.000000 2.35 0.124972 0.08 0.783083

Diff 75.04 0.000000 19.35 0.000011 0.70 0.403496
2y Ret 48.90 0.000000 6.13 0.013289 7.33 0.006777

Diff 66.77 0.000000 18.62 0.000016 2.02 0.155257
3y Ret 49.31 0.000000 5.82 0.015812 3.46 0.062767

Diff 58.21 0.000000 13.40 0.000252 3.36 0.066871
4y Ret 58.40 0.000000 6.09 0.013562 3.02 0.082082

Diff 49.58 0.000000 8.91 0.002838 1.19 0.276108
5y Ret 36.91 0.000000 1.36 0.243151 0.30 0.581721

Diff 44.03 0.000000 8.60 0.003354 0.15 0.697681
7y Ret 35.37 0.000000 1.59 0.207762 0.07 0.793606

Diff 38.07 0.000000 7.14 0.007524 0.11 0.742755
10y Ret 31.42 0.000000 2.24 0.134467 0.54 0.464427

Diff 70.34 0.000000 18.18 0.000020 0.00 0.992551
30y Ret 93.56 0.000000 16.68 0.000044 0.01 0.927006

Table 10. Engle’s ARCH LM test results.

Gaussian variables, 𝑀𝐼(𝑋, 𝑌) = − log ൫1 − 𝜌ଶ൯ /2, one can convert 𝑀𝐼(𝑋, 𝑌) into a correlation
measure that is equivalent to Gaussian (linear) correlation in terms of its information content,

(3.5) 𝜌ெூ (𝑋, 𝑌) = ඥ1 − 𝑒ିଶெூ(௑,௒).

An advantage of the above transformation is a more intuitive interpretation as it ranges from
0 to 1 as we go from independence to complete dependence. As a nonlinear measure, mu-
tual information takes into account the whole dependence structure and captures both linear
and nonlinear associations between random variables. Although mutual information is consid-
ered very powerful, its estimation is a long-standing difficult problem. As the joint and marginal
distributions in the above definition may indeed be quite general, most approaches fall into the
non-parametric class. These include histogram-based methods, splines, kernel density, near-
est neighbor, polynomial density expansions, empirical processes and even wavelets (Beirlant,
Dudewicz, Györfi, and van der Meulen, 1997; Walters-Williams and Li, 2009). Histogram meth-
ods are most commonly used. These methods bin observation into ranges, so that the densities
in (3.4) are approximated by various piecewise constant functions. Unfortunately, the number of
bins used, and the location of the bin edges can have a significant impact on the results. While
some ways to sidestep density estimation have been suggested, such as methods based on
order statistics (Vašíček, 1976; Learned-Miller, 2004), or by using so-called entropic spanning
graphs (Hero, Ma, Michel, and Gorman, 2002), removal of bias at the boundary tends to be
pestilent. Another approach is to try many different bin sizes and locations and to record the
maximum mutual information attained, appropriately normalized as in the maximal information
coefficient (MIC) of Reshef, Reshef, Funicane, Grossman, McVean, Turnbaugh, Lander, Mitzen-
macher, and Sabeti (2011):

(3.6) 𝑀𝐼𝐶 (𝑋, 𝑌) = max
௡ೣ ,௡೤ , ௡ೣ௡೤ஸ஻

max
ீ∈𝔾(௡ೣ ,௡೤)

𝑀𝐼 (𝑋𝔾, 𝑌𝔾)

logmin(𝑛௫ , 𝑛௬)
,
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Swap Maturity Form
Full sample 4-year sample 1-year sample

ఘಾ಺ ெூ஼ ఘಾ಺ ெூ஼ ఘಾ಺ ெூ஼

1y
Diff 0.7920 0.4934 0.6360 0.2592 0.4082 0.0912
Ret 0.7466 0.4075 0.7531 0.4186 0.8509 0.6436

ఊ∗ -0.3105 0.9377 1.5374

2y
Diff 0.7506 0.4144 0.6381 0.2614 0.4585 0.1180
Ret 0.6955 0.3305 0.6219 0.2445 0.8278 0.5781

ఊ∗ -0.6002 0.7571 1.8879

3y
Diff 0.7271 0.3761 0.5644 0.1918 0.4202 0.0971
Ret 0.6723 0.3007 0.5973 0.2206 0.8327 0.5912

ఊ∗ -0.6868 0.6704 1.7305

4y
Diff 0.7024 0.3399 0.7128 0.3547 0.5114 0.1516
Ret 0.6764 0.3057 0.6173 0.2398 0.8390 0.6087

ఊ∗ 0.0000 0.8496 1.5568

5y
Diff 0.7506 0.4144 0.6487 0.2731 0.4816 0.1319
Ret 0.6522 0.2770 0.6075 0.2302 0.8064 0.5254

ఊ∗ -0.9867 0.9031 0.0000

7y
Diff 0.7065 0.3458 0.5859 0.2103 0.5134 0.1529
Ret 0.6880 0.3206 0.6033 0.2263 0.7483 0.4104

ఊ∗ -0.9858 1.2227 1.5503

10y
Diff 0.6693 0.2970 0.4189 0.0965 0.6055 0.2284
Ret 0.7035 0.3416 0.6586 0.2844 0.7137 0.3560

ఊ∗ -0.9443 1.3321 1.7890

30y
Diff 0.5901 0.2140 0.6434 0.2672 0.4656 0.1222
Ret 0.7453 0.4054 0.7163 0.3598 0.7279 0.3773

ఊ∗ 0.0000 1.7090 1.9788

Table 11. Mutual information statistics against levels.

where 𝔾൫𝑛௫ , 𝑛௬൯ is the set of two-dimensional grids of size 𝑛௫ × 𝑛௬ covering sample support
ෝ𝕏× ෝ𝕐, 𝑋𝔾 and 𝑌𝔾 are discretizations of 𝑋 and 𝑌 onto this grid, while 𝐵 ∝ 𝑇଴.଺ is an upper bound
on the number of bins. It can be shown that the 𝑀𝐼𝐶 lies between 0 and 1, where 0 represents
no relationship between the variables and 1 represents a noise-free relationship of any form, not
just linear.

Table 11 gives an example of 𝜌ெூ and 𝑀𝐼𝐶 statistics enacted on our dataset. The risk repre-
sentation with lower 𝜌ெூ or lower 𝑀𝐼𝐶 is preferred as it indicates that level effects are captured
already. Also included is the elasticity of volatility parameter 𝛾 that gives the lowest mutual infor-
mation. According to the table, returns and differences are competitive in the full sample except
at longer maturities, where differences win. Differences add additional tenors to their tally using
4-year sample, and completely dominate over the 1-year sample. These results are rather at
odds with those of the earlier sections, although it should be pointed out that the 𝑀𝐼𝐶-minimal
elasticity of volatility seem to be located significantly above unity. These findings are hard to in-
terpret and we only conjecture that 𝜌ெூ and 𝑀𝐼𝐶 estimates are unduly influenced by boundary
effects due to the limited resolution of the interest rate grid near its zero boundary and associated
“discrete-like” moves in that region.
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3.5. Discussion. Difficulties reconciling results of testing various hypotheses across the two rival
specifications stem from misconstruing principles of model selection and of hypothesis testing.
The model selection process aims to choose one of the models under consideration for a particu-
lar purpose with a specific utility function in mind (Pesaran and Weeks, 1999). It treats all models
symmetrically and should end in a definitive outcome. Hypothesis testing, on the other hand,
attaches a different status to the null and to the alternative hypotheses, treating them asym-
metrically. By design, it looks for evidence of departure from the null hypothesis in the direction of
alternative hypotheses. Rejection of the null hypothesis does not necessarily imply acceptance
of any of the alternatives. Hypothesis testing is better suited to inferential problems where the
empirical validity of a theoretical prediction is the main goal.

Because of the unbalanced treatment of available models in the hypothesis testing approach,
the choice of the null hypothesis plays a pivotal role. In the case of non-nestedmodels, particularly
globally non-nested models, there is no natural null. Carrying out the analysis with different
models treated as the null can lead to ambiguities, as we have just observed.10

Furthermore, the simple comparison approaches applied above are oblivious of the careful
research work in the area of non-nested hypothesis testing. That literature, starting with the
pioneering work of Cox (1961, 1962), identified three principal approaches.

(1) Modified log-likelihood ratio procedure. From statistical point of view, the usual log-
likelihood ratio or Wald statistics are not centered at zero under the null when the hy-
potheses under consideration are not nested. For example, in the likelihood ratio test,
the degrees of freedom of the chi-square statistics is equal to the reduction in the dimen-
sion of the parameter space after imposing the necessary set of zero restrictions. When
neither of the two models nests the other model, the attendant parameter spaces are
unrelated. Cox’s 1961; 1962 contributionwas to notethatthis problem can be overcome
if a consistent estimate of expected log-likelihood ratio under the null can be obtained.
Closed form expressions for the Cox test are only available for a comparatively small
number of special cases. Simulation-based approximations and bootstrap-based pro-
cedures have been used to adjust the distribution of test statistics. These adjustments
need to be tailored to specific features of non-nested tests and to achieve desirable size
and power properties.

(2) Comprehensive model approach. This method relies upon a third comprehensive model,
artificially constructed so that each of the non-nested models is a special case. The
abundance of ways in which a comprehensive model can be constructed is intimidating
with widely explored examples, such as the exponential mixture, subject to important
limitations concerning disappearance of coefficients of the alternative model under the
null, problems with identification and unfavorable consequences for the power of the
test. Fortunately, a very natural comprehensive model exists and will be explored in the
sequel.

(2) Encompassing procedure. This approach attempts to directly test ability of one model
to explain one or more features of the rival model. The Wald and Score Encompassing

10Pesaran and Weeks (1999) point out that ambiguity is objectionable only if the primary objective is to select
a specific model for forecasting or decision making, but not if the goal is to evaluate the comparative strengths and
weaknesses of opposing explanations. Ability to assess strengths and weaknesses is an asset for statistical inference
and model building. For example, a rejection of both models can point to developing a third model incorporating the
desirable features of the original, as well as being theoretically meaningful.



26 SERGEI MOROZOV

Tests (WET and SET) are typically constructed under the assumption that one of the
rival models is correct, although in some cases this assumption had been relaxed. The
implementation of these tests tends to face several difficult hurdles such as derivation
of the binding function linking parameters of different models, general non-invertibility of
the covariance matrices involved in the test, etc. As a recent example of this approach,
Giacomini and Komunjer (2005) propose a method of comparing and combining con-
ditional quantile forecasts based on out-of-sample framework and on the principle of
encompassing. While promising, conclusions of their methods varied depending on the
tail quantile.

More integrated approach to non-nested hypothesis testing and model selection requires a
more formal definition. Non-nested hypothesis testing literature addressed this by means of a
variety of “closeness” criteria for measuring the divergence of one distribution function with re-
spect to another, similar to information measures in section 3.1. Given a measure of closeness, a
model is strictly nested within another model if and only if the divergence of the second model
with respect the first model is zero throughout the entire parameter space of the first model but
is non-zero for some parameter configuration of the second model. Globally non-nested mod-
els obtain if both divergence of the second model with respect to the first and the divergence
of the first model with respect to the second are non-zero for both parameter spaces. Partial
non-nesting corresponds to the case when divergences in both directions are non-zero for some
parameters in both spaces. Lastly, the two models are observationally equivalent if divergences
in both directions are zero for all values of parameters. Using these definitions, it is clear that
absolute and proportional specification are globally non-nested when formulated as in the pre-
ceding subsections. Closeness measures can also be defined from the perspective of the true
model. Vuong’s (1989) approach takes up this idea and proposes a probabilistic approach to
model selection based on testing the hypothesis that the models under consideration are equally
close to the true model against the hypothesis that one model is closer than another. Since in
our case, both functional specifications can be nested so that they correspond to different value
of the same parameter, differences in log-likelihood from the unrestricted estimate serve similar
purpose of making a probabilistic decision of selecting the best (i.e. the closest) model. For this
reason, we do not need to pursue Vuong’s (1989) approach formally.

4. Constant Elasticity of Volatility Model

The analysis of previous section highlighted the need to attend to the seemingly non-nested
character of the two rival hypotheses to gain firmer statistical footing. Fortunately, both functional
specifications can be viewed as special cases of modeling of ୼௥೟

௥ം೟షభ
, where 𝛾 = 0 corresponds to

modeling absolute change and 𝛾 = 1 corresponds to modeling proportional change. This brings
the constant elasticity of volatility model to the forefront.

4.1. The Model. We now assume that upon the time-series of the risk factor of interest follows
discrete-time version of constant elasticity of volatility model

(4.1) Δ𝑟௧ = 𝜇 + 𝜎𝑟ఊ௧ିଵ𝜖௧ ,



RISK FORM SELECTION 27

where 𝜎 and 𝛾 denote the scale and elasticity of volatility.11 The CEV model in (4.1) has been
popular and useful in describing the dynamics of the short-term interest rate12 (hence use of 𝑟௧
notation) and in models of equity volatility (under risk-neutral measure).

Mean drift parameter 𝜇will be shown to be quite small and could be safely omitted. Themodel
also ignores the possibility of the mean reversion since accounting for it is notoriously difficult, at
least in the interest rate context. Although monetary policy interventions by the central banks
may induce occasional relatively large jumps in the policy rates, the above formulation attributes
all interest rate moves to continuous shocks instead of jumps. We do so because jumps in the
U.S. interest rates outside of the federal funds market are hard to separately identify, especially as
the policy rates have been exceptionally low and stable throughout most of the sample period.13

Our dataset may be partially immune to the problem due to the focus on rates with at least one
year maturity.

4.2. Limited Information Approach: GMM. GeneralizedMethod of Moments (GMM) is an econo-
metric procedure for estimating the parameters of the model by choosing parameters so as to
match select few moments of the model to those of the data as closely as possible, with a
weighting matrix determining the relative importance of matching each moment. It is important
to realize the generality of the GMM. Without providing additional details, saying “we estimated
the parameters by GMM” is essentially the same as saying “we estimated the model on a com-
puter”. Indeed, a large variety of estimation procedures, including OLS, instrumental variables
estimation, two-stage least squares can be phrased as GMM procedures.

For a parametric model described by a parameter vector 𝜃, the art of the GMM consists in
selecting moments to match and selecting a weighting matrix. The mechanics of the GMM is
then to minimize a quadratic distance measure

(4.2) min
ఏ

𝐽் (𝜃) = min
ఏ

𝑚(𝜃)ᇱ𝑊𝑚(𝜃),

where 𝑚(𝜃) is a vector of 𝐿 moment conditions and 𝑊 is a 𝐿 × 𝐿 positive definite weighting
matrix. A key advantage of the GMM over other estimation procedures is the weakness of
statistical assumptions needed.

In the CEV context, we specify the following six moments

(4.3) 𝑚௧ = ቈ 𝑟௧ − 𝑟௧ିଵ − 𝜇
(𝑟௧ − 𝑟௧ିଵ − 𝜇)ଶ − 𝜎ଶ𝑟ଶఊ௧ିଵ

቉ ⊗ 𝐳௧

to match, where 𝐳௧ = (1, 𝑟௧ , 𝑟ଶ௧ ) is a vector of instruments. The first two imply matching of the
first and second conditional moments. The other four are orthogonality conditions, forcing the
residual terms to be uncorrelated with regression terms. Obviously one can extend the vec-
tor of instruments to any number of functions of the sample, and the fact that only a limited
number is used is the reason why this approach is of limited information - information in higher

11In the literature, the model is routinely calledthe constant elasticity of variance model, as in Chan, Karolyi, Longstaff,
and Sanders (1992) or Chan, Choy, and Lee (2007), since elasticity of variance is ଶఊ. We prefer volatility nomenclature
as it links more naturally with the problem at hand.

12Nominal interest rates cannot follow unrestricted random walk over very long horizons since they are bounded
above and below. However, the persistence pattern over (relatively) short horizons is better approximated in this way,
in contrast to modeling levels of rates themselves as stationary variables.

13Additionally, as jumps are not observed, the estimated jumpmodel would prevent using historical simulation in order
to compute various risk measures. Jump model is likely to be more useful for pricing and best applied to instantaneous
forward rates.
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order cross-moments is simply ignored. The loss of information leads to loss of efficiency, which
manifests as wider confidence bounds for the estimates. On the flip side, possibly misspecified
assumptions are not necessary. For example, the assumption of normally distributed error terms
is unnecessary. GMM-type estimators remain asymptotically unbiased under mild stationarity
requirements, even in the presence of conditionally heteroscedastic error terms.

Since we are estimating three model parameters with six moment conditions, the model is
overidentified. This is a deliberate choice so to enable testing over-identifying restrictions.

GMM estimation can be very finicky in the choice of inverse weighting matrix (also known as
spectral density matrix) which can account for various forms of heteroscedasticity and/or serial
correlation, choice of optimization algorithm, initial guesses14 and choice of instruments. We have
selected spectral density matrix estimate of White (1980) over alternative approaches based on
its better performance in recovering true parameters using pilot artificial samples from (4.1) with
normal and Student 𝑡 residuals. We used the same method to tune other GMM parameters such
as the number of lags in estimation of the spectral density matrix, number of convergence steps
to tune weighting matrix, demeaning, etc.

GMM estimation results are shown in Table 12. Over the full sample, most estimates cluster
around zero providing justification for the difference form. Elasticity estimates universally increase
when the estimation window is confined to the last four years, with only 30-year rates remaining
in difference space. Over the most recent one year, GMM estimates are again closer to returns
but the uncertainty bounds surrounding these are far too loose for comfort. These findings prompt
an idea that elasticity of volatility is a declining function of interest rate level.

Asymptotic 𝜒ଶ J-test for overidentifying restrictions (Gallant, 1987), shown in Table 13, sug-
gests that over the full 12 years of data, the CEV model constraints are too restrictive, which
is perhaps not too surprising as the large volume of data can overwhelm any simple model.
At one-year window, the CEV model is not rejected in about half the cases. Not surprisingly,
an examination of individual moment restrictions (not shown to save space) indicates that it
is matching the second moments that is a problem that leads to model rejection. Subsample
parameter instability seen in Table 12 is more informative regarding possible extensions of the
model needed to improve fit.

4.3. Full Information Approach: Maximum Likelihood. Full information approaches require com-
plete parametric specification for the distribution of residuals 𝜖௧ . Figure 3 contrasts two common
choices that we can implement – normal and Student 𝑡 distribution. Student 𝑡-distribution has
fatter tail, and so does CEV process with t-distributed residuals. The upper panel displays two
simulated paths starting from the common value and with perfect rank correlation of moves. It
makes clear that the size of the move under the Student t-distribution is larger than under nor-
mal distribution, conditional on rank of the residual realization. The lower panel display kernel-
smoothed densities of the two paths. Again, t-distribution tends to produce fatter tails when it
drives CEV -type process. This could be an important feature if the normal residual distribution
does not produce tail fat enough.

14We based initial guess on a two-stage least squares approach. In the first stage ఓ̂ ୀ ୼௥೟ . Second stage uses
regression ୪୭୥ ቀ(୼௥ೝ ି ఓ̂)మቁ ା ଵ.ଶ଻଴ଷ଺ଶ଼ସହ ୀ ୪୭୥ఙమ ା ఊ ୪୭୥ ൫௥మ೟షభ൯ ା ఢ̃೟, where ఢ̃೟ ୀ ୪୭୥ ൫ఢమ೟ ൯ ା ଵ.ଶ଻଴ଷ଺ଶ଼ସହ.
Constant ିଵ.ଶ଻଴ଷ଺ଶ଼ସହ is intended to ensure zero mean of ̃ఢ೟ and is valid for normally distributed ఢ೟ .
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Swap

Maturity
Parameter

Full sample 4-year sample 1-year sample
Estimate Bounds Estimate Bounds Estimate Bounds

ఓ -0.002 (-0.003,-0.001) -0.000 (-0.002,0.001) 0.000 (-0.002,0.002)
1y ఙ 0.031 (0.029,0.034) 0.037 (0.034,0.041) 0.019 (0.002,0.036)

ఊ 0.122 (0.052,0.194) 0.890 (0.742,1.039) 0.187 (-1.207,1.581)
ఓ -0.002 (-0.004,-0.001) -0.001 (-0.003,0.001) -0.000 (-0.003,0.002)

2y ఙ 0.041 (0.038,0.045) 0.037 (0.034,0.041) 0.027 (0.014,0.041)
ఊ 0.088 (0.020,0.156) 0.912 (0.738,1.086) 0.458 (-0.537,1.454)
ఓ -0.003 (-0.005,-0.001) -0.001 (-0.004,0.002) 0.000 (-0.003,0.003)

3y ఙ 0.046 (0.041,0.050) 0.037 (0.033,0.042) 0.029 (0.012,0.045)
ఊ 0.101 (0.027,0.174) 0.868 (0.683,1.052) 0.746 (-0.551,2.042)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.005,0.002) -0.000 (-0.004,0.003)

4y ఙ 0.050 (0.044,0.056) 0.036 (0.031,0.042) 0.030 (0.021,0.039)
ఊ 0.091 (0.013,0.170) 0.839 (0.640,1.036) 1.190 (-0.730,3.110)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.005,0.002) -0.001 (-0.005,0.003)

5y ఙ 0.053 (0.046,0.060) 0.034 (0.028,0.040) 0.026 (0.020,0.032)
ఊ 0.084 (-0.005,0.173) 0.837 (0.635,1.039) 1.397 (-0.166,2.960)
ఓ -0.003 (-0.005,-0.000) -0.002 (-0.006,0.002) -0.002 (-0.007,0.003)

7y ఙ 0.059 (0.049,0.069) 0.032 (0.025,0.038) 0.023 (0.010,0.035)
ఊ 0.023 (-0.084,0.131) 0.800 (0.591,1.009) 1.204 (-0.004,2.412)
ఓ -0.002 (-0.004,0.000) -0.002 (-0.006,0.002) -0.003 (-0.009,0.004)

10y ఙ 0.074 (0.059,0.089) 0.035 (0.025,0.045) 0.022 (0.006,0.038)
ఊ -0.105 (-0.235,0.024) 0.635 (0.389,0.882) 1.013 (0.024,2.002)
ఓ -0.002 (-0.004,0.000) -0.003 (-0.007,0.002) -0.002 (-0.009,0.005)

30y ఙ 0.143 (0.107,0.178) 0.086 (0.049,0.123) 0.026 (-0.001,0.053)
ఊ -0.558 (-0.711,-0.405) -0.154 (-0.482,0.173) 0.701 (-0.320,1.721)

Table 12. GMM estimation results.

Swap

Maturity

Full sample 4-year sample 1-year sample
J-test p-value J-test p-value J-test p-value

1y 86.027 0.000 6.984 0.072 3.202 0.361
2y 149.542 0.000 10.971 0.012 2.791 0.425
3y 157.656 0.000 7.518 0.057 7.053 0.070
4y 133.993 0.000 5.104 0.164 8.083 0.044
5y 126.020 0.000 5.596 0.133 8.273 0.041
7y 92.017 0.000 5.856 0.119 9.839 0.020
10y 50.021 0.000 6.345 0.096 12.309 0.006
30y 12.033 0.007 11.124 0.011 13.311 0.004

Table 13. GMM J-test for overidentifying restrictions.

Under the normal assumption, the likelihood of one observation Δ𝑟௧ is given by

(4.4) 𝑝 (Δ𝑟௧|𝑟௧ିଵ, 𝜇, 𝜎, 𝛾) =
1

𝜎𝑟ఊ௧ିଵ√2𝜋
expቆ− 1

2𝜎ଶ𝑟ଶఊ௧ିଵ
(Δ𝑟௧ − 𝜇)ଶቇ .

Under the Student 𝑡-distribution assumption, the likelihood is instead

(4.5) 𝑝 (Δ𝑟௧|𝑟௧ିଵ, 𝜇, 𝜎, 𝛾, 𝜈) =
Γቀఔାଵଶ ቁ

Γ ൫ఔଶ൯ 𝜎𝑟
ఊ
௧ିଵ√𝜈𝜋

൭1 + 1
𝜈 ቆ

Δ𝑟௧ − 𝜇
𝜎𝑟ఊ௧ିଵ

ቇ
ଶ
൱
ି(ఔାଵ)/ଶ

.

As 𝜈 → ∞, 𝑡ఔ-distribution converges to normal and so does the CEV likelihood.
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Swap

Maturity
Parameter

Full sample 4-year sample 1-year sample
Estimate 95% Bounds Estimate 95% Bounds Estimate 95% Bounds

ఓ -0.001 (-0.002,0.000) 0.000 (-0.001,0.002) 0.000 (-0.002,0.003)
1y ఙ 0.033 (0.032,0.034) 0.039 (0.037,0.041) 0.030 (0.022,0.041)

ఊ 0.389 (0.352,0.425) 0.994 (0.910,1.077) 0.774 (0.302,1.245)
ఓ -0.001 (-0.003,0.001) -0.000 (-0.002,0.002) -0.000 (-0.003,0.003)

2y ఙ 0.044 (0.042,0.047) 0.040 (0.038,0.041) 0.033 (0.024,0.045)
ఊ 0.312 (0.267,0.358) 0.937 (0.850,1.024) 0.731 (0.172,1.290)
ఓ -0.002 (-0.004,0.001) -0.001 (-0.003,0.002) -0.000 (-0.003,0.003)

3y ఙ 0.050 (0.047,0.053) 0.038 (0.036,0.040) 0.049 (0.039,0.062)
ఊ 0.235 (0.181,0.288) 0.899 (0.808,0.991) 1.857 (1.229,2.485)
ఓ -0.002 (-0.004,0.001) -0.001 (-0.004,0.002) -0.001 (-0.005,0.002)

4y ఙ 0.056 (0.051,0.060) 0.035 (0.033,0.038) 0.037 (0.033,0.040)
ఊ 0.161 (0.099,0.223) 0.893 (0.789,0.997) 2.277 (1.705,2.850)
ఓ -0.002 (-0.004,0.001) -0.002 (-0.005,0.002) -0.002 (-0.006,0.002)

5y ఙ 0.061 (0.056,0.067) 0.033 (0.029,0.036) 0.025 (0.022,0.028)
ఊ 0.100 (0.028,0.171) 0.922 (0.802,1.042) 2.220 (1.663,2.776)
ఓ -0.002 (-0.004,0.000) -0.002 (-0.006,0.002) -0.003 (-0.008,0.003)

7y ఙ 0.072 (0.064,0.081) 0.030 (0.026,0.035) 0.017 (0.012,0.023)
ఊ -0.040 (-0.125,0.046) 0.889 (0.739,1.040) 1.967 (1.344,2.590)
ఓ -0.002 (-0.004,0.000) -0.002 (-0.006,0.002) -0.003 (-0.009,0.003)

10y ఙ 0.087 (0.075,0.100) 0.033 (0.027,0.041) 0.013 (0.007,0.022)
ఊ -0.176 (-0.273,-0.079) 0.716 (0.529,0.902) 1.903 (1.176,2.630)
ఓ -0.002 (-0.004,0.000) -0.003 (-0.007,0.002) -0.003 (-0.010,0.005)

30y ఙ 0.154 (0.130,0.184) 0.085 (0.062,0.116) 0.009 (0.003,0.023)
ఊ -0.602 (-0.713,-0.490) -0.111 (-0.353,0.130) 1.892 (0.957,2.828)

Table 14. Maximum likelihood estimation results with Gaussian innovations.

The log-likelihood of the sample {𝑟௧}்௧ୀ଴ is then

(4.6) ℒ ቀ𝜇, 𝜎, 𝛾, 𝜈ห {𝑟௧}்௧ୀ଴ቁ =
்

෍
௧ୀଵ

log 𝑝 (Δ𝑟௧|𝑟௧ିଵ, 𝜇, 𝜎, 𝛾, 𝜈) ,

with 𝜈 = ∞ distinguishing model with normal innovations from that with Student 𝑡 residuals.
The magnitudes and patterns of the maximum likelihood estimates, in Table 14 for the normal

residuals and in Table 15 for the Student 𝑡 case, are in line with the expectations set by the
GMM approach. To reiterate, estimates of the elasticity of volatility are in the vicinity or below
zero using the full sample and rise steeply if the earlier data, characterized by higher interest
rates, are excluded, continuing to support an idea of elasticity declining with level. The steep rise
effect is slightly stronger in the Gaussian case. With respect to the parameter 𝜈 that governs tail
behavior of Student 𝑡 distribution, we find that significant departures from normality are evident
at the short end of the curve using the full sample. Elsewhere, indications of non-normality are
more moderate, although the likelihood ratio test (not shown) strongly rejects the null of normal
CEV. On a technical side, we note that log-likelihood function is better behaved than the GMM
criterion, making for an easier effort in obtaining the estimates.

Variation of 𝛾̂ெ௅ா across different sub-samples is very notable. To formally assess its statistical
significance, we applied the Nyblom stability test (Nyblom, 1989) that amounts to the Lagrange
Multiplier test of constant parameters against the martingale difference alternative with constant
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Swap

Maturity
Parameter

Full sample 4-year sample 1-year sample
Estimate 95% Bounds Estimate 95% Bounds Estimate 95% Bounds

ఓ -0.001 (-0.002,0.000) -0.001 (-0.002,0.000) 0.000 (-0.002,0.002)
ఙ 0.021 (0.020,0.022) 0.030 (0.028,0.033) 0.019 (0.011,0.031)

1y ఊ 0.299 (0.257,0.342) 0.950 (0.845,1.054) 0.379 (-0.360,1.117)
ఔ 2.883 (2.542,3.224) 5.223 (3.640,6.805) 5.698 (2.189,9.207)
ఓ -0.002 (-0.003,0.000) -0.001 (-0.003,0.001) 0.000 (-0.002,0.002)
ఙ 0.030 (0.028,0.032) 0.031 (0.028,0.033) 0.022 (0.014,0.036)

2y ఊ 0.304 (0.253,0.354) 0.960 (0.846,1.073) 0.624 (-0.243,1.492)
ఔ 3.387 (2.926,3.849) 5.037 (3.514,6.560) 4.218 (2.005,6.432)
ఓ -0.002 (-0.004,-0.000) -0.001 (-0.003,0.001) 0.000 (-0.003,0.003)
ఙ 0.035 (0.032,0.038) 0.029 (0.027,0.031) 0.029 (0.020,0.041)

3y ఊ 0.259 (0.200,0.318) 0.938 (0.822,1.054) 1.312 (0.441,2.183)
ఔ 3.829 (3.260,4.398) 4.994 (3.483,6.506) 3.945 (1.937,5.952)
ఓ -0.002 (-0.004,-0.000) -0.002 (-0.004,0.001) -0.001 (-0.004,0.002)
ఙ 0.040 (0.036,0.043) 0.028 (0.025,0.030) 0.028 (0.024,0.032)

4y ఊ 0.193 (0.124,0.261) 0.908 (0.780,1.036) 1.943 (1.170,2.716)
ఔ 4.174 (3.513,4.835) 5.299 (3.644,6.954) 5.058 (2.113,8.002)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.005,0.001) -0.002 (-0.005,0.002)
ఙ 0.043 (0.039,0.048) 0.026 (0.023,0.030) 0.022 (0.018,0.026)

5y ఊ 0.143 (0.065,0.222) 0.894 (0.749,1.039) 1.940 (1.233,2.646)
ఔ 4.326 (3.622,5.030) 5.322 (3.619,7.024) 6.551 (1.826,11.276)
ఓ -0.003 (-0.005,-0.000) -0.002 (-0.006,0.001) -0.003 (-0.008,0.002)
ఙ 0.052 (0.045,0.060) 0.026 (0.022,0.031) 0.017 (0.012,0.025)

7y ఊ 0.010 (-0.085,0.105) 0.806 (0.629,0.983) 1.750 (1.015,2.485)
ఔ 4.798 (3.950,5.646) 5.806 (3.807,7.805) 11.612 (-3.057,26.282)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.006,0.002) -0.003 (-0.009,0.003)
ఙ 0.062 (0.052,0.073) 0.028 (0.022,0.036) 0.013 (0.007,0.024)

10y ఊ -0.119 (-0.231,-0.007) 0.651 (0.432,0.870) 1.699 (0.868,2.531)
ఔ 4.826 (3.967,5.684) 5.188 (3.533,6.844) 12.198 (-5.594,29.991)
ఓ -0.002 (-0.004,-0.000) -0.002 (-0.006,0.002) -0.003 (-0.011,0.004)
ఙ 0.109 (0.088,0.135) 0.061 (0.042,0.090) 0.011 (0.004,0.031)

30y ఊ -0.516 (-0.650,-0.382) -0.062 (-0.352,0.229) 1.558 (0.514,2.603)
ఔ 5.572 (4.473,6.672) 4.845 (3.407,6.284) 8.888 (0.065,17.712)

Table 15. Maximum likelihood estimation results with Student 𝑡 innovations.

hazard of parameter change (Hansen, 1990).15,16 To make a sharper contrast, location and scale
parameters 𝜇 and 𝜎 were assumed to be constant under the alternative, even though there
is some evidence that the volatility scale parameter may be unstable as well, see section 9.
Three versions of the test were run, making different assumptions about which subset of {𝛾, 𝜈} is
potentially unstable. The results are shown in Table 16 with the p-values corrected for the finite
sample size distortions under the null withthe help of a Monte Carlo simulation. We conclude that
elasticity of volatility is not stable in the full sample, but mostly stable in the shorter subsamples.
As the later subsamples are associated with lower interest rates, this finding points to a potential
usefulness of the variable elasticity of volatility. We also find that even though the estimates of

15The martingale difference alternative allows for substantial flexibility, such as random walk or single structural break
alternatives (Nyblom, 1989). However, the test is not informative about the timing or type of the structural change.

16Test formulation relies on analytic scores and the Hessian of the log-likelihood function. Details of the test derivation
are relegated to appendix C.
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Swap

Maturity
Parameter

Full sample 4-year sample 1-year sample
Estimate 95% Bounds Estimate 95% Bounds Estimate 95% Bounds

ఓ -0.001 (-0.002,0.000) -0.001 (-0.002,0.000) 0.000 (-0.002,0.002)
ఙ 0.021 (0.020,0.022) 0.030 (0.028,0.033) 0.019 (0.011,0.031)

1y ఊ 0.299 (0.257,0.342) 0.950 (0.845,1.054) 0.379 (-0.360,1.117)
ఔ 2.883 (2.542,3.224) 5.223 (3.640,6.805) 5.698 (2.189,9.207)
ఓ -0.002 (-0.003,0.000) -0.001 (-0.003,0.001) 0.000 (-0.002,0.002)
ఙ 0.030 (0.028,0.032) 0.031 (0.028,0.033) 0.022 (0.014,0.036)

2y ఊ 0.304 (0.253,0.354) 0.960 (0.846,1.073) 0.624 (-0.243,1.492)
ఔ 3.387 (2.926,3.849) 5.037 (3.514,6.560) 4.218 (2.005,6.432)
ఓ -0.002 (-0.004,-0.000) -0.001 (-0.003,0.001) 0.000 (-0.003,0.003)
ఙ 0.035 (0.032,0.038) 0.029 (0.027,0.031) 0.029 (0.020,0.041)

3y ఊ 0.259 (0.200,0.318) 0.938 (0.822,1.054) 1.312 (0.441,2.183)
ఔ 3.829 (3.260,4.398) 4.994 (3.483,6.506) 3.945 (1.937,5.952)
ఓ -0.002 (-0.004,-0.000) -0.002 (-0.004,0.001) -0.001 (-0.004,0.002)
ఙ 0.040 (0.036,0.043) 0.028 (0.025,0.030) 0.028 (0.024,0.032)

4y ఊ 0.193 (0.124,0.261) 0.908 (0.780,1.036) 1.943 (1.170,2.716)
ఔ 4.174 (3.513,4.835) 5.299 (3.644,6.954) 5.058 (2.113,8.002)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.005,0.001) -0.002 (-0.005,0.002)
ఙ 0.043 (0.039,0.048) 0.026 (0.023,0.030) 0.022 (0.018,0.026)

5y ఊ 0.143 (0.065,0.222) 0.894 (0.749,1.039) 1.940 (1.233,2.646)
ఔ 4.326 (3.622,5.030) 5.322 (3.619,7.024) 6.551 (1.826,11.276)
ఓ -0.003 (-0.005,-0.000) -0.002 (-0.006,0.001) -0.003 (-0.008,0.002)
ఙ 0.052 (0.045,0.060) 0.026 (0.022,0.031) 0.017 (0.012,0.025)

7y ఊ 0.010 (-0.085,0.105) 0.806 (0.629,0.983) 1.750 (1.015,2.485)
ఔ 4.798 (3.950,5.646) 5.806 (3.807,7.805) 11.612 (-3.057,26.282)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.006,0.002) -0.003 (-0.009,0.003)
ఙ 0.062 (0.052,0.073) 0.028 (0.022,0.036) 0.013 (0.007,0.024)

10y ఊ -0.119 (-0.231,-0.007) 0.651 (0.432,0.870) 1.699 (0.868,2.531)
ఔ 4.826 (3.967,5.684) 5.188 (3.533,6.844) 12.198 (-5.594,29.991)
ఓ -0.002 (-0.004,-0.000) -0.002 (-0.006,0.002) -0.003 (-0.011,0.004)
ఙ 0.109 (0.088,0.135) 0.061 (0.042,0.090) 0.011 (0.004,0.031)

30y ఊ -0.516 (-0.650,-0.382) -0.062 (-0.352,0.229) 1.558 (0.514,2.603)
ఔ 5.572 (4.473,6.672) 4.845 (3.407,6.284) 8.888 (0.065,17.712)

Table 16. Nyblom stability test for CEV model with Student 𝑡 errors.

the degrees of freedom parameters may appear drifting towards normality over time, the drift is
largely a consequence of reduced sample size.

Notice that in both MLE models, the confidence bounds are tighter than those from the GMM.
One can view the maximum likelihood as a limiting case of GMM: under MLE the distribution of
errors is specified so that in a sense all of the moments are included.

Figure 3 continues comparison of MLE and GMM results via an error plot indicating two stan-
dard error bands around respective estimates of 𝛾. It makes apparent a slight tendency of the
GMM estimates of elasticity of volatility to fall below maximum likelihood estimates, but not sta-
tistically significantly in most cases. Vertical elongation of error bands, albeit visually obscured by
unequal axes, confirms higher efficiency of likelihood-based methods, while the GMM offers a
better robustness to deviations from Student 𝑡 assumption. The cost of robustness is the GMM
error bounds that are much too wide when only one year of data is used.
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Figure 3. Comparison of GMM and maximum likelihood estimates.

4.4. Full Information Approach: Bayesian Estimation. Bayesian approach goes further than
maximum likelihood – in addition to the information contained in the data sample, it utilizes
prior information. Prior information could be either innate views, natural parameter restrictions
(e.g., certain stability constraints) or information from earlier or related studies.

Bayesian approach also resolves a potential problem with maximum likelihood algorithm in
that required multivariate optimization could be sometimes difficult, especially in the multi-modal
case, and could lead one to point estimates outside the reasonable range.

Since we are interested in full information approaches, we again have to specify parametric
form of the residual distribution. As before and out of the same considerations for robustness
against fat tails, we specify either normal or Student 𝑡-distributed residuals.17 The degrees of
freedom parameter will be allowed to be unknown random parameter with its own prior.

For estimation and sampling convenience we adopt the scale mixture of normals representa-
tion for the Student-𝑡 family of distributions18

(4.7) 𝜖௧ห𝑢௧ ∼ 𝒩 (0, 𝑢௧) , where
1
𝑢௧

∼ 𝒢 ൬𝜈2 ,
𝜈
2൰ ,

with 𝒢 (𝑑𝑓, 𝑆) denoting gamma distribution with degrees of freedom (shape) parameter 𝑑𝑓 and
scale parameter 𝑆.

17Chan, Choy, and Lee (2007) advocate the exponential power distribution family that encompasses normal and
Laplace distributions.

18Scale mixture representation draws on the familiar genesis of ௧ distribution as a ratio of normal and ఞమ distributions.
Indeed, 𝒢 ൫ ഌమ ,

ഌ
మ ൯ is ఞమഌ .
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4.4.1. Prior Distributions. Regarding the prior distributions of the model parameters (𝜇, 𝜎, 𝛾, 𝜈)
we follow the literature in postulating that all components are independent.

Mean parameter 𝜇 is a priori normally distributed:

(4.8) 𝜇 ∼ 𝒩 ൫𝑚଴
ఓ , 𝜎ଶ଴ఓ൯ .

Since weakly informative priors obtain when 𝜎଴ఓ is large, we set 𝜎଴ఓ = 10. We center the
distribution at zero (𝑚଴

ఓ = 0) asthe results in the previous sections indicatethat 𝜇̂ ≈ 0. Conditional
posterior is also Gaussian:

(4.9) 𝜇ห𝜎, 𝛾, 𝑢௧ , {𝑟௧}்௧ୀଵ ∼ 𝒩 ൫𝑚ଵ
ఓ , 𝜎ଶଵఓ൯ ,

where

𝜎ିଶଵఓ = 𝜎ିଶ଴ఓ + 𝜎ିଶ
்

෍
௧ୀଶ

𝑟ିଶఊ௧ିଵ
1
𝑢௧
,(4.10)

𝑚ଵ
ఓ = 𝜎ିଶଵఓ ቌ𝜎ିଶ଴ఓ𝑚଴

ఓ + 𝜎ିଶ
்

෍
௧ୀଶ

𝑟ିଶఊ௧ିଵ
Δ𝑟௧
𝑢௧

ቍ .(4.11)

The scale of volatility is assumed to follow an inverse-gamma prior distribution:

(4.12) 𝜎ଶ ∼ ℐ𝒢 (𝑑𝑓଴, 𝑆଴)

with degrees of freedom parameter 𝑑𝑓଴ and scale parameter 𝑆଴. This distribution is convenient
since it is a conjugate prior for the univariate normal sampling model (Gelman, Carlin, Stern,
Dunson, Vehtari, and Rubin, 2013), so that the posterior distribution, conditional on 𝜇, 𝛾 and 𝑢௧ ,
is also inverse-gamma:

(4.13) 𝜎ଶቤ ቊ 𝑟௧ − 𝜇
𝑟ఊ௧ିଵ√𝑢௧

ቋ
்

௧ୀଶ
∼ ℐ𝒢 (𝑑𝑓ଵ, 𝑆ଵ) ,

where

𝑑𝑓ଵ = 𝑑𝑓଴ + 𝑇 − 1,(4.14)

𝑆ଵ =
𝑑𝑓଴𝑆଴+∑்

௧ୀଶ
ଵ
௨೟ ൬

୼௥೟
௥ം೟షభ

− ୼௥೟
௥ം೟షభ

൰
ଶ

𝑇 − 1 .(4.15)

To express ignorance about the scale of the process we have chosen vague prior for 𝜎ଶ by setting
𝑑𝑓଴ = 0.2 and 𝑆଴ = 100, 000.

For the elasticity of variance parameter, we propose uniform distribution on [−1, 2].

(4.16) 𝛾 ∼ 𝒰[−1, 2].

This choice is motivated by desire to limit the range of possible values coupled with the lack of
substantially precise prior information. Indeed, the results in Chan, Karolyi, Longstaff, and Sanders
(1992) and Lubrano (2001) suggest that elasticity moderately in excess of unity is common for
short term interest rates while using –1 as a lower bound is designed to conservatively bracket
the range [0, 1] that is popular in the interest rate option pricing literature. The prior mean
corresponds to the CIR square root model (Cox, Ingersoll, and Ross, 1985).

Lastly, we specify the prior for the degrees of freedom parameter as uniform on [1, 30]:

(4.17) 𝜈 ∼ 𝒰[1, 30].
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𝜈 = 1 corresponds to the Cauchy distribution with infinite mean, and we therefore assume that
CEV residuals do not have tails fatter than Cauchy’s. Similarly, it is well known that Student 𝑡
distribution with 𝜈 of about 30 comes very close to normal distribution, and it would be very hard
and perhaps pointless to try to distinguish values of 𝜈 above that range.

4.4.2. Objects of Interest. The main object of interest is the joint posterior distribution of the four
unknown parameters, 𝑝 ቀ𝜇, 𝜎, 𝛾, 𝜈ห {𝑟௧}்௧ୀଵቁ, and the corresponding four marginal posterior distri-
butions. Direct calculation of these is complicated, since we have to integrate our latent mixing
parameters and because priors for 𝛾 and 𝜈 are not conjugate. Direct marginalizing 𝛾 or 𝜈 out of
the joint posterior is also difficult, since it involves three-dimensional integration needed to infer
the normalizing constant in

(4.18) 𝑝 ቀ𝜇, 𝜎, 𝛾, 𝜈ห {𝑟௧}்௧ୀଵቁ ∝ 𝑝 ቀ{𝑟௧}்௧ୀଵ ห𝜇, 𝜎, 𝛾, 𝜈ቁ 𝑝(𝜇, 𝜎, 𝛾, 𝜈).

Instead, we turn to the popular Markov chain Monte Carlo (MCMC) class of algorithms (Gel-
man, Carlin, Stern, Dunson, Vehtari, and Rubin, 2013; Robert and Casella, 2000). An appealing
feature of MCMC is its modular nature as extended models can be developed by building ad-
ditional blocks without destroying the foundation. This will be seen in the subsequent sections.
Details of algorithm are relegated to appendix D.1.

4.4.3. Posterior Inference. Posterior medians and posterior 95% confidence bounds for different
swap maturities and subsamples are shown in Table 17. The results are in excellent agreement
with ML estimates in Table 15, particularly regarding the magnitudes and patterns of elasticity
estimates over maturities and over different subsamples. These patterns continue suggesting
downward-sloping elasticity as the rates go higher. Consistency with MLE illustrates general
vagueness of our prior assumptions. The upper bounds of posterior confidence intervals for 𝛾 are,
however, substantially smaller for the 1-year data window due to asymmetry of the marginal
posterior distribution while the asymptotic MLE bounds are based on a normal distribution and
thus are symmetric.

Indeed, a conflict between prior and likelihood information is evident in Figure 4 where posterior
density of 𝛾 for 30-year swap rate estimated over 1-year subsample leans against the upper
bound of the prior’s support. Similar conflicts occur for all maturities over 4-year, whereas posterior
densities for shorter maturities tend to gravitate toward the center of the prior’s support. The
model can be easily re-estimated by widening the support of the prior distribution. However, no
such conflicts arise for longer samples, so we continue to trust our prior beliefs about plausible
range for elasticity and leave the priors alone.

5. Multivariate Common Constant Elasticity of Volatility Model

5.1. The Model. It is often inconvenient to treat related risk factor time-series separately with
regard to selection of functional form. Indeed, if the different series represent rates or spreads on
similar instruments across the spectra of maturity or credit rating, assigning some to returns and
others to differences makes explaining comovements more difficult, opens a door to the suspicion
of gaming the system and leaves an impression of arbitrariness, especially if supporting evidence
is vague.

Thus, it makes sense to constrain the elasticity of variance in the cross-section of related risk
factors, while still allowing differential volatility scales and other parameters. In other words,
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Swap Maturity Parameter
Full sample 4-year sample 1-year sample

Posterior Posterior Posterior Posterior Posterior Posterior
Median 95% Bounds Median 95% Bounds Median 95% Bounds

ఓ -0.001 (-0.002,0) -0.001 (-0.002,0) 0.000 (-0.002,0.002)
1y ఙ 0.021 (0.02,0.023) 0.030 (0.028,0.033) 0.019 (0.012,0.031)

ఊ 0.299 (0.257,0.342) 0.951 (0.85,1.056) 0.374 (-0.351,1.103)
ఔ 2.897 (2.576,3.273) 5.388 (4.025,7.592) 6.479 (3.554,15.438)
ఓ -0.002 (-0.003,0) -0.001 (-0.003,0.001) 0.000 (-0.002,0.002)

2y ఙ 0.030 (0.028,0.032) 0.031 (0.029,0.033) 0.023 (0.014,0.036)
ఊ 0.304 (0.253,0.354) 0.960 (0.849,1.073) 0.598 (-0.232,1.457)
ఔ 3.404 (2.985,3.918) 5.191 (3.891,7.272) 4.579 (2.791,8.742)
ఓ -0.002 (-0.004,0) -0.001 (-0.003,0.001) 0.000 (-0.003,0.003)

3y ఙ 0.035 (0.032,0.038) 0.029 (0.027,0.032) 0.029 (0.021,0.038)
ఊ 0.258 (0.2,0.319) 0.937 (0.823,1.054) 1.265 (0.414,1.925)
ఔ 3.853 (3.341,4.501) 5.154 (3.849,7.146) 4.274 (2.655,8.015)
ఓ -0.002 (-0.004,0) -0.002 (-0.004,0.001) -0.001 (-0.004,0.002)

4y ఙ 0.040 (0.036,0.043) 0.028 (0.025,0.031) 0.028 (0.024,0.032)
ఊ 0.194 (0.124,0.262) 0.910 (0.779,1.035) 1.715 (1.065,1.987)
ఔ 4.217 (3.621,4.978) 5.480 (4.094,7.841) 5.641 (3.247,12.464)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.005,0.001) -0.002 (-0.006,0.002)

5y ఙ 0.044 (0.039,0.048) 0.026 (0.023,0.03) 0.023 (0.02,0.027)
ఊ 0.143 (0.065,0.222) 0.896 (0.747,1.042) 1.750 (1.183,1.986)
ఔ 4.367 (3.74,5.19) 5.530 (4.074,7.949) 7.880 (3.965,23.405)
ఓ -0.003 (-0.005,0) -0.002 (-0.006,0.002) -0.003 (-0.008,0.002)

7y ఙ 0.052 (0.045,0.06) 0.026 (0.022,0.031) 0.018 (0.015,0.025)
ఊ 0.012 (-0.085,0.104) 0.811 (0.63,0.987) 1.664 (1.014,1.981)
ఔ 4.837 (4.079,5.834) 6.071 (4.372,8.972) 15.128 (5.704,28.941)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.006,0.002) -0.003 (-0.01,0.003)

10y ఙ 0.062 (0.052,0.073) 0.028 (0.022,0.036) 0.015 (0.011,0.026)
ఊ -0.116 (-0.228,-0.007) 0.658 (0.443,0.872) 1.619 (0.868,1.979)
ఔ 4.869 (4.095,5.89) 5.374 (3.958,7.737) 16.196 (5.913,29.232)
ఓ -0.002 (-0.004,0) -0.002 (-0.006,0.002) -0.003 (-0.011,0.004)

30y ఙ 0.109 (0.088,0.136) 0.061 (0.041,0.089) 0.011 (0.007,0.028)
ఊ -0.517 (-0.651,-0.381) -0.051 (-0.342,0.241) 1.544 (0.659,1.974)
ఔ 5.655 (4.682,7.022) 5.000 (3.765,7.05) 12.526 (4.941,28.496)

Table 17. Bayesian estimation results for CEV-𝑡 model.

consider the following model for the cross-section of 𝑁 related risk factor time-series:

(5.1) Δ𝑟௜௧ = 𝜇௜ + 𝜎௜𝑟ఊ௜௧𝜖௜௧ , 𝜖௜௧ ∼ 𝑡ఔ೔ , 𝑖 = 1,… ,𝑁, 𝑡 = 1,… , 𝑇.

5.2. Estimation. This model could be treatedwithGMMormaximum likelihoodmethods, but nei-
ther likelihood function nor GMM objective factorize exactly along different sets of series-specific
parameters, which calls for multivariate optimization, which could be delicate to set up and en-
sure convergence to the global optimum. On the other hand, Bayesian approach of the previous
section can be extended to the common elasticity of volatility setting in a straightforward fashion.
19 Therefore, we focus on Bayesian computation to facilitate this model.

19Bayesian approach is also natural for a multilevel hierarchical versions of (5.1) that incorporate random effects of
maturity, e.g.:

୼௥೔೟ ∼ 𝒩 (ఓ೔ , ୣ୶୮ (୪୭୥ఙ೔ ାு(௭೔; ఏ೥೔) ୪୭୥ ௥೔೟)) , ఓ೔ ∼ 𝒩 ൫ఓబ , ఙమഋ൯ , ୪୭୥ఙ೔ ∼ 𝒩 ൫௦బ௜, ఙమೞ ൯ , ఏ೥೔ ∼ 𝒩 ൫ఏ೥బ , ఙమഇ൯ ,
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Figure 4. Posterior distribution of elasticity of volatility of US dollar 30-year in-
terest rate swap rates over 1-year subsample in CEV-𝑡 model.

Again, we make an independent prior assumption for all 𝜇௜ , 𝜎௜ , 𝛾, and 𝜈௜ :

(5.2) 𝑝 (𝜇, 𝜎, 𝛾, 𝜈) = 𝑝 (𝛾)
ே

ෑ
௜ୀଵ

𝑝 (𝜇௜) 𝑝 (𝜎௜) 𝑝 (𝜈௜) ,

where boldface variables denote vectors of parameters in the cross-section.

Component priors take the same convenient functional form as in the single time-series case,
except for wider prior for 𝜈௜ :

𝜇௜ ∼ 𝒩 ൫𝑚଴
ఓ , 𝜎ଶ଴ఓ൯ ,(5.3)

𝜎ଶ௜ ∼ ℐ𝒢 (𝑑𝑓଴, 𝑆௜଴) ,(5.4)

𝛾 ∼ 𝒰[−1, 2],(5.5)

𝜈௜ ∼ 𝒰[1, 130].(5.6)

The MCMC algorithm for this model is similar and can be found in appendix D.2.

5.3. Posterior Inference. Table 18 gives posterior medians and posterior 95% confidence bounds
for all parameters of common constant elasticity of volatility model, while Figure 5 compares pos-
terior shapes for 𝛾 distributions. The results are very similar for all maturity-specific parameters
except for the scale of volatility at the long end of the curve using the full sample and for 30-
year maturity using 4-year sample. Common elasticity of volatility is estimated higher than the

whereு (⋅) is any function that mapsℝ onto a suitable finite interval to constrain values of ఊ to a plausible range and ఏ೥೔
are parameters describing the stochastic process of (transformed) elasticity of volatility. We do not pursue such models
here in order to keep the presentation concise.
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Swap Maturity Parameter
Full sample 4-year sample 1-year sample

Posterior Posterior Posterior Posterior Posterior Posterior
Median 95% Bounds Median 95% Bounds Median 95% Bounds

ఓ -0.001 (-0.002,0) -0.001 (-0.002,0) 0.000 (-0.002,0.002)
1y ఙ 0.023 (0.021,0.024) 0.029 (0.027,0.032) 0.038 (0.03,0.048)

ఔ 2.812 (2.509,3.161) 5.298 (3.99,7.417) 6.046 (3.385,14.996)
ఓ -0.002 (-0.003,0) -0.001 (-0.003,0.001) 0.000 (-0.002,0.003)

2y ఙ 0.033 (0.031,0.035) 0.031 (0.029,0.033) 0.035 (0.028,0.043)
ఔ 3.382 (2.973,3.898) 5.165 (3.86,7.234) 4.293 (2.663,8.057)
ఓ -0.002 (-0.004,0) -0.001 (-0.003,0.001) 0.000 (-0.003,0.003)

3y ఙ 0.037 (0.035,0.039) 0.030 (0.027,0.032) 0.031 (0.025,0.037)
ఔ 3.871 (3.34,4.522) 5.137 (3.853,7.243) 4.362 (2.685,8.327)
ఓ -0.002 (-0.004,0) -0.002 (-0.004,0.001) -0.001 (-0.004,0.002)

4y ఙ 0.039 (0.037,0.041) 0.028 (0.026,0.03) 0.027 (0.023,0.031)
ఔ 4.205 (3.622,4.961) 5.474 (4.087,7.787) 5.399 (3.132,11.897)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.005,0.001) -0.002 (-0.006,0.002)

5y ఙ 0.040 (0.038,0.042) 0.027 (0.024,0.029) 0.024 (0.021,0.028)
ఔ 4.342 (3.719,5.144) 5.494 (4.074,7.948) 7.284 (3.792,20.653)
ఓ -0.003 (-0.005,0) -0.002 (-0.006,0.002) -0.003 (-0.008,0.002)

7y ఙ 0.040 (0.038,0.042) 0.024 (0.022,0.027) 0.020 (0.017,0.024)
ఔ 4.743 (4.011,5.712) 6.157 (4.422,9.243) 14.460 (5.705,28.759)
ఓ -0.003 (-0.005,0) -0.002 (-0.006,0.002) -0.004 (-0.01,0.003)

10y ఙ 0.039 (0.036,0.041) 0.022 (0.02,0.024) 0.016 (0.013,0.021)
ఔ 4.702 (3.98,5.668) 5.469 (4.022,7.904) 15.707 (5.719,29.054)
ఓ -0.002 (-0.004,0) -0.002 (-0.006,0.002) -0.003 (-0.011,0.004)

30y ఙ 0.035 (0.033,0.037) 0.018 (0.016,0.02) 0.013 (0.009,0.017)
ఔ 4.778 (4.031,5.755) 4.522 (3.463,6.162) 12.455 (4.933,28.516)
ఊ 0.206 (0.183,0.229) 0.883 (0.835,0.931) 1.446 (1.15,1.734)

Table 18. Bayesian estimation results for common elasticity of volatility model.

average of individual elasticities in all cases, with little overlap of posterior distribution using full
or 4-year samples. For each sample, the overlap of posterior distributions for 𝜈௜ is also substan-
tial, with an exception of one- and two-year maturities using full sample. This suggests further
reduction in the number of distinct model parameters.

All in all, the full sample is suggestive of difference representation of interest rate swap rate risk,
while risk over 4-year and 1-year windows would be better represented in yield return space.

6. Asymmetric Elasticity of Volatility

Asymmetric patterns in volatility has been subject of an extensive literature (Engle and Pat-
ton, 2001). In the interest rate context, such studies has been motivated by the zero bound
considerations. As a simple extension, we specify the following multivariate model that displays
dependency of the elasticity of volatility on the direction of the move:

(6.1) Δ𝑟௜௧ = 𝜇௜ + 𝜎௜𝑟ఊ(୼௥೔೟షభ)௜௧ 𝜖௜௧ , 𝜖௜௧ ∼ 𝑡ఔ೔ , 𝑖 = 1,… ,𝑁, 𝑡 = 1,… , 𝑇.

where 𝛾 (Δ𝑟௜௧) = ቐ
𝛾ଵ, if Δ𝑟௜௧ ≤ 0
𝛾ଶ, if Δ𝑟௜௧ > 0.

The model is estimated by Bayesian methods above, with

the same priors. Priors for both downward and upward elasticity parameters, 𝛾ଵ and 𝛾ଶ, are
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Figure 5. Posterior distributions of common elasticity of volatility of US dollar
interest rate swap rates.

uniform on [−1, 2]. The posterior densities of the two elasticities are shown in Figure 6, while
the posterior distributions for other parameters are omitted for brevity since they are similar to
those in section 4. The posterior distributions are indeed distinct for all sub-samples. Of the three
sub-samples, only in the shortest sub-sample the downward elasticity is such that the zero lower
bound is unambiguously respected. In the two longer sub-samples, the magnitudes of elasticities
switch ranking.

7. Variable Elasticity of Volatility Model

7.1. The Model. Changes in elasticity estimators over sub-samples dominated by low rates as
well as non-parametric evidence in a later section 11 suggests that modeling elasticity of volatility
as a constant throughout the entire time-series range is perhaps too restrictive. A common
pattern emerging from non-parametric analysis of credit spread series is that elasticity tends to
rise with spread level, but remains range-bound. Some kind of sigmoid link function would be
able to capture this shape. In particular, we posit the following representation of the variable
elasticity of volatility:20

(7.1) 𝛾 (𝑟) = 3
𝜋atan (𝛽଴ + 𝛽ଵ𝑟) +

1
2 .

20While the use of arc-tangent function may seem esoteric, this link function has appeared in the generalized linear
models (Hardin and Hilbe, 2012; Ramalho, Ramalho, and Murteira, 2010) under the name of ”cauchit” as it is related
to the CDF of the Cauchy distribution. Our initial experience with the more standard, and less heavy-tailed, logistic
alternative has shown it to be prone to numerical overflows for this particular model and dataset.
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Figure 6. Posterior distributions of downward and upward elasticities of volatil-
ity of US dollar interest rate swap rates.

Scaling factor 3/𝜋 is there to ensure that 𝛾 ∈ (−1, 2). With (7.1), the statistical model for a single
time-series of interest becomes

(7.2) Δ𝑟௧ = 𝜇 + 𝜎𝑟ఊ(௥)௧ିଵ 𝜖௧ .

We continue assuming Student 𝑡 distribution for the error term 𝜖௧ .
The model is estimated by Bayesian approach. Prior assumptions regarding drift, volatility and

degrees of freedom parameters remain the same as in 5.2. Additionally, we specify independent
vague Gaussian priors for 𝛽଴ and 𝛽ଵ :

𝛽଴ ∼ 𝒩 ቀ𝑚ఉబ , 𝜎ଶఉబቁ ,(7.3)

𝛽ଵ ∼ 𝒩 ቀ𝑚ఉభ , 𝜎ଶఉభቁ ,(7.4)

with 𝑚ఉబ = 𝑚ఉభ = 0 and 𝜎ఉబ = 𝜎ఉభ = 100.

7.2. Posterior Inference. Estimation results are in Table 19. Posterior distributions of new pa-
rameters 𝛽଴ and 𝛽ଵ fall into three categories. The first category of estimates contain posterior
distributions for short rates (up to 4-year maturity) using the full sample of data. This category
is characterized by the entirely negative posterior for 𝛽଴ whereas the posterior for 𝛽ଵ lies wholly
in the positive territory. The signs of 𝛽଴ and 𝛽ଵ are reversed in the second category which con-
tains longer maturities over the full sample and all maturities over the four-year sample. The
third category comprises all estimates using one-year sample with posterior distributions for both
parameters having significant mass on both sides of zero, indicating that variable elasticity of



RISK FORM SELECTION 41

Swap

Maturity
Parameter

Full sample 4-year sample 1-year sample
Posterior Posterior Posterior Posterior Posterior Posterior
Median 95% Bounds Median 95% Bounds Median 95% Bounds

ఓ -0.001 (-0.002, -0.000) -0.001 (-0.002, 0.000) 0.000 (-0.002, 0.002)
ఙ 0.005 (0.005, 0.005) 0.033 (0.029, 0.037) 0.038 (0.015, 0.048)

1y ఉబ -28.586 (-37.503,-21.072) 0.828 (0.524, 1.211) -4.956 (-9.747, -0.509)
ఉభ 28.640 (21.174, 37.664) -0.204 (-0.389, -0.030) 12.728 (0.129, 24.378)
ఔ 2.006 (2.000, 2.030) 5.271 (3.961, 7.376) 10.185 (4.367, 90.383)
ఓ -0.003 (-0.004, -0.001) -0.001 (-0.003, 0.001) 0.000 (-0.002, 0.003)
ఙ 0.006 (0.006, 0.006) 0.031 (0.029, 0.034) 0.034 (0.011, 0.047)

2y ఉబ -28.291 (-37.464,-20.658) 0.734 (0.403, 1.122) -1.225 (-8.210, 11.741)
ఉభ 28.427 (20.875, 37.540) -0.116 (-0.280, 0.056) 4.838 (-9.653, 20.100)
ఔ 2.005 (2.000, 2.027) 5.038 (3.802, 7.027) 4.587 (2.733, 9.125)
ఓ -0.002 (-0.003, -0.000) -0.001 (-0.003, 0.001) 0.000 (-0.003, 0.003)
ఙ 0.005 (0.005, 0.006) 0.029 (0.027, 0.032) 0.035 (0.025, 0.041)

3y ఉబ -26.335 (-35.197,-18.965) 0.694 (0.344, 1.096) 3.579 (-6.995, 20.666)
ఉభ 26.426 (18.921, 35.417) -0.087 (-0.232, 0.059) 4.779 (-10.466, 21.435)
ఔ 2.005 (2.000, 2.027) 5.065 (3.819, 7.077) 4.367 (2.688, 8.407)
ఓ -0.003 (-0.005, -0.002) -0.002 (-0.004, 0.001) -0.001 (-0.004, 0.002)
ఙ 0.005 (0.004, 0.005) 0.027 (0.025, 0.030) 0.028 (0.024, 0.033)

4y ఉబ -25.135 (-34.437,-17.399) 0.780 (0.353, 1.281) 6.205 (-6.754, 23.463)
ఉభ 25.212 (17.520, 34.446) -0.111 (-0.261, 0.031) 6.190 (-8.361, 22.902)
ఔ 2.005 (2.000, 2.027) 5.437 (4.075, 7.695) 5.764 (3.297, 13.638)
ఓ -0.003 (-0.005, -0.001) -0.002 (-0.005, 0.001) -0.002 (-0.005, 0.002)
ఙ 0.026 (0.024, 0.029) 0.024 (0.021, 0.028) 0.023 (0.020, 0.026)

5y ఉబ 0.988 (0.798, 1.178) 0.968 (0.394, 1.657) 4.934 (-10.376, 22.873)
ఉభ -0.210 (-0.239, -0.180) -0.148 (-0.323, 0.008) 6.999 (-5.580, 23.310)
ఔ 5.579 (4.597, 6.870) 5.522 (4.090, 7.908) 8.725 (4.115, 64.043)
ఓ -0.003 (-0.005, -0.001) -0.002 (-0.006, 0.001) -0.003 (-0.008, 0.003)
ఙ 0.024 (0.021, 0.028) 0.022 (0.018, 0.029) 0.017 (0.015, 0.020)

7y ఉబ 0.925 (0.688, 1.166) 0.984 (0.140, 1.959) 3.933 (-11.765, 22.577)
ఉభ -0.185 (-0.218, -0.154) -0.138 (-0.351, 0.038) 6.897 (-3.652, 23.477)
ఔ 5.777 (4.774, 7.173) 6.092 (4.415, 9.126) 46.685 (7.705,125.361)
ఓ -0.003 (-0.005, -0.001) -0.002 (-0.006, 0.002) -0.003 (-0.009, 0.003)
ఙ 0.024 (0.020, 0.031) 0.020 (0.014, 0.033) 0.012 (0.011, 0.015)

10y ఉబ 0.779 (0.444, 1.078) 1.068 (-0.052, 2.470) 3.704 (-12.551, 22.046)
ఉభ -0.158 (-0.194, -0.121) -0.158 (-0.430, 0.033) 6.995 (-2.901, 22.637)
ఔ 5.308 (4.427, 6.496) 5.448 (4.017, 7.889) 54.923 (8.331,125.985)
ఓ -0.002 (-0.004, -0.000) -0.003 (-0.007, 0.001) -0.003 (-0.010, 0.005)
ఙ 0.047 (0.028, 0.120) 0.015 (0.011, 0.032) 0.008 (0.007, 0.010)

30y ఉబ 0.073 (-2.082, 0.622) 2.197 (0.497, 4.001) 3.331 (-14.918, 22.016)
ఉభ -0.124 (-0.162, 0.004) -0.411 (-0.752, -0.141) 7.377 (-2.185, 22.801)
ఔ 5.730 (4.745, 7.125) 5.164 (3.877, 7.333) 25.683 (5.929,120.255)

Table 19. Bayesian estimation results for variable elasticity of volatility model.

volatility is not necessary over such a short estimation window. Over that window, large values
of the Student 𝑡 shape parameter 𝜈 for the long end of the curve also confirm that non-normal
fat tails are probably not required.

Typical shapes of elasticity of volatility are shown in the upper panels of Figure 7 where we
selected representative examples from the first two categories. Namely, we used posterior me-
dians estimated over the full sample for 1-year and 5-year interest rates swaps respectively.
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Figure 7. Typical estimated elasticity and volatility profiles.

The lower panels translate estimated elasticities into implied profiles of volatility function, using
median 𝜎 to scale it into the right units. The volatility profile is non-monotone in both cases since
elasticity eventually becomes negative for either very low rates or for very high rates. This may
be an undesirable feature of our parameterization of the sigmoid elasticity function with forced
negative asymptote. This feature is particularly pernicious for the first category where elasticity
turns negative for very low rates since this may magnify the possibility of negative rates. A more
flexible specification may do better by making sigmoid bounds free parameters. Alternatively, we
can specify piecewise volatility function with different profiles for low and high rates. A version of
the latter idea is pursued in section 8. For the second category of posterior distributions, negative
elasticity at high rates is much less of a problem. The profile in the bottom right panel offers some
support for shifting the risk form from returns to differences at about 3% interest rate level. The
switch from returns to differences is in line with the evidence of section 3.3.

7.3. Model Comparison. Comparison of two models in the Bayesian framework is typically done
via the posterior odds ratio. When the prior odds ratio is set to 1, as is done in much of the
Bayesian literature in the absence of strong preferences for a particular model and also in the
present paper, the log posterior odds ratio is given by the log Bayes factor, that is the difference
of marginal log-likelihoods of the two competing models.

(7.5) log 𝑝(𝑀଴|𝑦)
𝑝(𝑀ଵ|𝑦)

= log 𝑝(𝑦|𝑀଴)
𝑝(𝑦|𝑀ଵ)

+ log 𝜋(𝑀଴)
𝜋(𝑀ଵ)

= log 𝑝(𝑦|𝑀଴)
𝑝(𝑦|𝑀ଵ)

.
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Swap Maturity
Full

sample

4-year

sample

1-year

sample

1y 1244.410 2.903 3.284
2y 1244.184 4.270 6.054
3y 1162.967 3.959 5.768
4y 1113.342 3.824 5.560
5y -88.976 3.687 6.230
7y -48.814 4.481 7.037
10y -20.805 4.269 6.679
30y 0.423 1.059 7.156

Table 20. Log Bayes factors for constant elasticity of volatility model (𝑀଴)
against variable elasticity alternative (𝑀ଵ).

To calculate the marginal likelihood, we follow Chib (1995) by using Bayes’ theorem

(7.6) log 𝑝(𝑦|𝑀௞) = log 𝑝(𝑦|𝜃,𝑀௞) + log 𝑝(𝜃|𝑀௞) − log 𝑝(𝜃|𝑦,𝑀௞),

where 𝑀௞ denotes 𝑘௧௛ model, 𝑘 ∈ {0, 1}, whereas 𝜃 is a high density point in the parameter
space, such as the posterior median. The first term on the right hand side of (7.6) is the standard
log-likelihood, the second term is the log prior density, while the third term involves the posterior
density of parameters. Since only the sample fromthe posterior density is available, wemake use
of a multivariate kernel density estimate to approximate the last term, following Kim, Shephard,
and Chib (1998).

Table 20 presents log Bayes factors for comparison of Bayesian constant elasticity model with
Student 𝑡 residuals from section 4 against the sigmoid variable elasticity model currently dis-
cussed. To interpret log Bayes factors, we use Jeffreys’s (1961) scale. Accordingly, the evidence
in the full sample is decisive in favor of CEV model for maturities up to 4-year, decisive in favor of
variable elasticity model for 5-year to 10-year maturities and barely worth mentioning in favor
of CEV for 30-year maturities. In the four year sample, the evidence in favor of CEV is substantial
for 1-year maturity, strong for 3-5 year maturities, barely worth mentioning for 30-year maturity
and very strong in the remaining cases. In the one year sample, the evidence in favor of CEV
is strong for 1-year maturity and decisive for all others. We can therefore conclude that sigmoid
variable elasticity model is only a successful extension for longer maturities in full sample and
is not needed in shorter subsamples. If variable elasticity is important for shorter maturities or
shorter subsamples, we are advised to find better ways to account for the potential decline of
elasticity of volatility with the level of interest rates.

8. Hybrid Piecewise Volatility Profiles

8.1. The Model. Kainth, Kwiatkowski, and Muirden (2010), inspired by Rebonato, Mahal, Joshi,
Buchholz, and Nyholm (2005), posit the following piecewise CEV-type process:

(8.1) Δ𝑟௧ = 𝜇 + 𝜎𝐻 (𝑟௧ିଵ; 𝑟௅ , 𝑟௎ , 𝜆, 𝛾) 𝜖௧ ,

where 𝐻 (𝑟௧ିଵ; 𝑟௅ , 𝑟௎ , 𝜆, 𝛾) = ቀ ௥೟షభ௥ಽ ቁ
ఊ
𝟙௥೟షభழ௥ಽ + 𝟙௥ಽஸ௥೟షభழ௥ೆ + (1 + 𝜆 ⋅ (𝑟௧ିଵ − 𝑟௎)) 𝟙௥ೆஸ௥೟షభ . We

add to (8.1) an assumption concerning error terms, 𝜖௧ ∼ 𝑡ఔ . A hypothetical volatility profile implied
by (8.1) is shown in Figure 8.
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Figure 8. A hypothetical hybrid piecewise volatility profile.

Upper cutoff, 𝑟௎ is identified if 𝜆 ≠ 0, and larger 𝜆 makes identification easier. To ensure
𝑟௎ > 𝑟௅ , we set 𝑟௎ = 𝑟௅ + exp(𝛿). In the absence of a priori knowledge about new parameters,
we specify vague independent normal priors for log(𝑟௅), 𝛿 and 𝜆. Other priors are as before.

To conserve space and to help identification of cutoff parameters,21 we constrained parame-
ters that control the shape of the volatility profiles, namely 𝑟௅ , 𝑟௎ , 𝛾 and 𝜆 to be the same across
the entire term structure. Bayesian posterior inference is presented in Table 21.

8.2. Posterior Inference. Using full sample, the distance between estimated 𝑟௅ and 𝑟௎ is very
small, suggesting that the middle regime is not necessary. The slope of the relationship between
volatility and swap rate in the third regime is negative which is also illustrated in posterior median
volatility profile in Figure 9. This finding is in agreement with the variable elasticity of volatility
results in Table 19 where posterior for the slope parameter 𝛽ଵ lies unambiguously below zero.
Both models therefore agree that for the full sample, the swap rates are best modeled in returns
below the cutoff of about 280 basis points and as simple differences above it. For more recent
subsamples, swap rates at most maturities do not reach that cutoff level. As a result sub-sample-
specific cutoffs fall significantly so that most of the sample is located above the cutoff.22 Using
4-years sample, piecewise model suggests a proportional law specification while sigmoid-type
model of section 7 is somewhat less conclusive if slope parameter 𝛽ଵ is maturity-specific since for
some maturities and for sufficiently high rates during the last 4-years the elasticity drops close
to zero. Imposing the same 𝛽ଵ for all terms results in negative 𝛽ଵ (not shown), which overall
suggests percentage change representation. Finally, we conclude that the swap rate risks in the

21Cutoff parameters ௥ಽ and, especially, ௥ೆ are difficult to identify because of scarcity of data corresponding to the
right-most section of the profile and because of small estimated values of ఒ for the full sample. If these parameters are
left unconstrained across maturities, the estimates are close for maturities with wide span of rates, in agreement with
Rebonato and Podugin (2010).

22Extremely wide posterior distribution of elasticity ఊ in the first regime is also a consequence of this since hardly any
observation falls into that regime.
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Swap Maturity Parameter
Full sample 4-year sample 1-year sample

Posterior Posterior Posterior Posterior Posterior Posterior
Median 95% Bounds Median 95% Bounds Median 95% Bounds

ఓ -0.001 (-0.002,0) -0.001 (-0.002,0) 0.000 (-0.002,0.002)
1y ఙ 0.047 (0.044,0.049) 0.002 (0.001,0.004) 0.002 (0.001,0.004)

ఔ 3.708 (3.233,4.296) 5.389 (4.063,7.534) 6.634 (3.558,18.151)
ఓ -0.001 (-0.003,0) -0.001 (-0.003,0.001) 0.000 (-0.002,0.003)

2y ఙ 0.062 (0.059,0.066) 0.002 (0.001,0.004) 0.002 (0.001,0.003)
ఔ 4.839 (4.083,5.823) 5.231 (3.938,7.322) 4.540 (2.763,8.949)
ఓ -0.002 (-0.004,0) -0.001 (-0.003,0.001) 0.000 (-0.003,0.003)

3y ఙ 0.066 (0.062,0.069) 0.002 (0.001,0.004) 0.002 (0.001,0.003)
ఔ 5.347 (4.481,6.531) 5.151 (3.858,7.267) 4.198 (2.631,7.707)
ఓ -0.002 (-0.004,-0.001) -0.002 (-0.004,0.001) -0.001 (-0.004,0.002)

4y ఙ 0.067 (0.064,0.07) 0.002 (0.001,0.004) 0.001 (0.001,0.003)
ఔ 5.483 (4.564,6.702) 5.485 (4.061,7.777) 4.914 (2.945,9.664)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.005,0.001) -0.002 (-0.006,0.002)

5y ఙ 0.069 (0.065,0.072) 0.002 (0.001,0.003) 0.001 (0.001,0.003)
ఔ 5.441 (4.535,6.649) 5.555 (4.071,8.042) 6.200 (3.426,16.543)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.006,0.002) -0.003 (-0.009,0.002)

7y ఙ 0.069 (0.065,0.072) 0.002 (0.001,0.003) 0.001 (0.001,0.003)
ఔ 5.553 (4.607,6.846) 6.231 (4.437,9.432) 15.628 (5.222,113.934)
ఓ -0.003 (-0.005,-0.001) -0.002 (-0.006,0.002) -0.004 (-0.01,0.002)

10y ఙ 0.068 (0.065,0.072) 0.001 (0.001,0.003) 0.001 (0.001,0.003)
ఔ 5.142 (4.303,6.245) 5.462 (4.012,7.903) 27.290 (5.604,122.556)
ఓ -0.002 (-0.004,-0.001) -0.002 (-0.006,0.002) -0.004 (-0.011,0.004)

30y ఙ 0.066 (0.063,0.07) 0.001 (0.001,0.002) 0.001 (0.001,0.003)
ఔ 5.762 (4.755,7.155) 4.433 (3.38,6.021) 14.513 (4.931,110.844)
௥ಽ 2.867 (2.688,2.976) 0.000 (0,0.044) 0.001 (0,0.156)
௥ೆ 2.900 (2.774,3.158) 0.002 (0,0.063) 0.015 (0,0.194)
ఒ -0.124 (-0.133,-0.116) 14.205 (6.925,26.772) 17.651 (7.951,30.363)
ఊ 0.725 (0.685,0.766) 0.505 (-0.924,1.909) 0.507 (-0.925,1.926)

Table 21. Bayesian estimation results for hybrid piecewise elasticity of volatility model.

most recent year are best represented as percentage changes in rates. Since the degrees of
freedom parameters indicate only a moderate departure from normality, the added benefit of
rates following a proportional law is a virtual guarantee that rates will remain positive.

8.3. Model Comparison. We applied Bayesian model selection methodology, described in sec-
tion 7.3, to discriminate constant elasticity model of section 4.4 (𝑀଴) against the current piecewise
model (𝑀ଵ). The log Bayes factors are shown in Table 22. Here, we find decisive evidence in
favor of piecewise model for all maturities in the long sample except 30-year maturity. This re-
solves the curious issue we observed with the first group volatility profiles described in section
7.2 as driven by bounds on sigmoid elasticity function that are at odds with the data. For shorter
subsamples, variable elasticity of volatility, as before, is unnecessary.

9. Constant Elasticity of Volatility with Stochastic Volatility Scale

The analysis thus far has not considered the possibility that volatility has its own source of
uncertainty unrelated to the level of the series. Indeed, Andersen and Lund (1997), Ball and
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Figure 9. Hybrid piecewise volatility profile for 5-year swap maturity using full sample.

Swap Maturity
Full

sample

4-year

sample

1-year

sample

1y -100.883 13.532 15.079
2y -135.886 11.547 13.972
3y -127.043 12.224 13.021
4y -102.355 13.460 16.148
5y -76.828 13.762 16.995
7y -34.559 15.048 16.478
10y -6.642 16.884 14.656
30y 5.826 37.500 13.474

Table 22. Log Bayes factors for constant elasticity of volatility model (𝑀଴)
against hybrid piecewise alternative (𝑀ଵ).

Torous (1999) and Trolle and Schwartz (2009) all find evidence of stochastic volatility in the
interest rates.

To accommodate the stochastic volatility, we follow Andersen and Lund (1997) and Eraker
(2001) and specify the following set of independent univariate models,23

Δ𝑟௜௧ = 𝜇௥௜ + 𝜎௜௧𝑟ఊ೔௜௧ 𝜖௜௧ , 𝜖௜௧ ∼ 𝑡ఔ೔ ,
log 𝜎௜௧ = 𝜇ఙ௜ + 𝜌௜ (log 𝜎௜௧ିଵ − 𝜇ఙ௜) + 𝜎ఎ௜𝜂௜௧ , 𝜂௜௧ ∼ 𝒩 (0, 1) ,

(9.1)

23The model (9.1) also bears similarity to SABR framework of Hagan, Kumar, Lesniewski, and Woodward (2002)
except that our formulation is in discrete time, is in the actuarial (physical) measure, does not have unit root in log-
volatility and applies to the whole of the term structure. Relaxing unit root assumption is important as could be confirmed
by improvement in DIC (not shown).
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as well as two multivariate versions that constrain time evolution of volatility across different
maturities in slightly different ways:

Δ𝑟௜௧ = 𝜇௥௜ + 𝜎̄௜𝜎௧𝑟ఊ೔௜௧ 𝜖௜௧ , 𝜖௜௧ ∼ 𝒩 (0, 1) ,
log 𝜎௧ = 𝜇ఙ + 𝜌 (log 𝜎௧ିଵ − 𝜇ఙ) + 𝜎ఎ𝜂௧ , 𝜂௧ ∼ 𝒩 (0, 1) ,

(9.2)

Δ𝑟௜௧ = 𝜇௥௜ + 𝜎̄௜𝜎௧𝑟ఊ௜௧𝜖௜௧ , 𝜖௜௧ ∼ 𝒩 (0, 1) ,
log 𝜎௧ = 𝜇ఙ + 𝜌 (log 𝜎௧ିଵ − 𝜇ఙ) + 𝜎ఎ𝜂௧ , 𝜂௧ ∼ 𝒩 (0, 1) .

(9.3)

To ensure identification, we set 𝜎̄ଵ = 1 for both panel models. Both multivariate models dispense
with flexibility to capture fat tails in both state and measurement equations since, as the univari-
ate model results below indicate, the evidence of fat tails is weak, consistently with improvements
in fit due to combining stochastic volatility and CEV reported in Eraker (2001).

Priors for the new stochastic volatility parameters 𝜇ఙ , 𝜌 and 𝜎ఎ are similar to those frequently
used in stochastic volatility literature (e.g., Yu (2005)) and are only slightly informative:

(9.4) 𝜇ఙ ∼ 𝒩 (0, 100) , 𝜌 ∼ 𝒰 (−1, 1) , 𝜎ଶఎ ∼ ℐ𝒢 (2.5, 0.025) ,

independently of each other and other parameters. Error terms 𝜖௧ and 𝜂ఛ are uncorrelated at all
leads and lags. This model belongs to the class of non-linear non-Gaussian state-space time-
series models since the volatility dynamics are not observed. Some technical details related to
the model estimation can be found in appendix D.3. Estimation results are reported in tables 23,
24 and 25.

9.1. Univariate Constant Elasticity of Stochastic of Volatility (CEV-SV) Model. If there are no
cross-maturity constraints, the stochastic volatility is highly persistent, in line with much of the
stochastic volatility literature. Estimates of elasticity of volatility are substantially similar across
maturities, with wider posterior confidence intervals, and are only slightly higher than the ones
reported in section 4, with all the same patterns across different sub-samples or maturities. Thus,
incorporating stochastic volatility does not overturn our earlier conclusions. Across-the-board
upward shift in the posterior distribution of the degrees of freedom parameter is also expected
based on results of Eraker (2001). Since the Student 𝑡 distribution is itself a scale mixture of
normal distributions, having two different mixtures does not seem necessary.

9.2. Multivariate CEV Model with Common Stochastic Volatility. Next, we constrain stochastic
elasticity process to be the same across the curve while letting other parameter vary freely. The
most notable change we find is that the estimated persistence of volatility becomes much lower
as the common stochastic volatility has to soak up some of the non-parallel moves of the yield
curve. Posterior distributions of the elasticity of volatility are a bit wider than those of models
without stochastic volatility, but they are centered nearly spot on the same values. Compared to
the univariate models with stochastic volatility, elasticity estimates move back lower.

9.3. Multivariate Model with Common Elasticity and Stochastic Volatility. Finally, if we make
all sources of time-variation across different maturities the same, and only the mean and scale
parameter to vary in the cross-section, the results remain similar with respect to all model param-
eters except elasticities. As far as elasticity parameters are concerned, the full sample estimate
of common 𝛾 resembles those from the short end of the curve, while the estimates from shorter
sub-samples are more akin to those at the long end. The magnitude pattern across sub-samples
remains consistent with earlier results.
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Swap

Maturity
Parameter

Full sample 4-year sample 1-year sample
Posterior Posterior Posterior Posterior Posterior Posterior
Median 95% Bounds Median 95% Bounds Median 95% Bounds

ఓ -0.000 ( -0.001, 0.001) -0.001 ( -0.002, 0.000) 0.000 ( -0.002, 0.002)
ఔ 6.311 ( 5.094, 8.187) 16.713 ( 6.636, 92.984) 49.651 ( 7.169, 99.189)

1y ఊ 0.353 ( 0.152, 0.595) 0.901 ( 0.693, 1.092) 0.507 ( -0.439, 1.458)
ఓ೓ -3.810 ( -4.099, -3.560) -3.469 ( -3.629, -3.330) -3.825 ( -4.464, -3.192)
ఘ 0.985 ( 0.974, 0.993) 0.897 ( 0.755, 0.954) 0.650 ( -0.283, 0.913)
ఙആ 0.087 ( 0.073, 0.104) 0.153 ( 0.107, 0.239) 0.252 ( 0.141, 0.419)
ఓ -0.001 ( -0.002, 0.000) -0.001 ( -0.003, 0.000) -0.000 ( -0.003, 0.002)
ఔ 8.691 ( 6.563, 12.535) 18.537 ( 6.769, 93.830) 50.198 ( 6.854, 99.334)

2y ఊ 0.365 ( 0.147, 0.616) 0.935 ( 0.733, 1.122) 0.874 ( -0.236, 1.830)
ఓ೓ -3.488 ( -3.810, -3.209) -3.416 ( -3.546, -3.305) -3.561 ( -4.192, -3.015)
ఘ 0.986 ( 0.976, 0.994) 0.874 ( 0.654, 0.944) 0.693 ( 0.284, 0.904)
ఙആ 0.077 ( 0.065, 0.094) 0.164 ( 0.111, 0.283) 0.287 ( 0.164, 0.455)
ఓ -0.001 ( -0.003, 0.000) -0.002 ( -0.004, 0.000) -0.000 ( -0.003, 0.002)
ఔ 9.825 ( 7.214, 14.870) 16.067 ( 6.671, 91.496) 47.701 ( 5.697, 99.455)

3y ఊ 0.364 ( 0.127, 0.654) 0.938 ( 0.718, 1.149) 1.469 ( 0.444, 1.971)
ఓ೓ -3.416 ( -3.799, -3.092) -3.484 ( -3.632, -3.345) -3.392 ( -3.785, -3.124)
ఘ 0.986 ( 0.977, 0.994) 0.894 ( 0.769, 0.953) 0.683 ( 0.242, 0.901)
ఙആ 0.075 ( 0.063, 0.090) 0.155 ( 0.107, 0.244) 0.292 ( 0.164, 0.465)
ఓ -0.002 ( -0.004, 0.000) -0.003 ( -0.005, 0.000) -0.001 ( -0.004, 0.002)
ఔ 11.901 ( 8.259, 21.238) 29.109 ( 8.382, 96.952) 46.093 ( 5.885, 99.195)

4y ఊ 0.326 ( 0.065, 0.628) 0.902 ( 0.647, 1.171) 1.713 ( 1.002, 1.986)
ఓ೓ -3.337 ( -3.744, -2.991) -3.519 ( -3.715, -3.329) -3.518 ( -3.685, -3.367)
ఘ 0.984 ( 0.974, 0.992) 0.915 ( 0.824, 0.962) 0.544 ( -0.170, 0.866)
ఙആ 0.076 ( 0.063, 0.091) 0.141 ( 0.101, 0.207) 0.268 ( 0.154, 0.418)
ఓ -0.002 ( -0.004, -0.000) -0.003 ( -0.006, -0.000) -0.002 ( -0.006, 0.002)
ఔ 14.386 ( 9.193, 33.172) 32.572 ( 8.926, 97.744) 45.582 ( 6.826, 99.050)

5y ఊ 0.295 ( 0.013, 0.621) 0.884 ( 0.592, 1.174) 1.740 ( 1.113, 1.989)
ఓ೓ -3.265 ( -3.723, -2.888) -3.564 ( -3.819, -3.318) -3.721 ( -3.862, -3.570)
ఘ 0.982 ( 0.971, 0.991) 0.917 ( 0.825, 0.962) 0.214 ( -0.610, 0.770)
ఙആ 0.078 ( 0.066, 0.095) 0.141 ( 0.101, 0.205) 0.240 ( 0.142, 0.379)
ఓ -0.002 ( -0.004, -0.000) -0.004 ( -0.007, -0.000) -0.003 ( -0.008, 0.002)
ఔ 22.656 ( 11.899, 82.931) 49.456 ( 12.451, 99.345) 55.230 ( 11.118, 99.546)

7y ఊ 0.151 ( -0.158, 0.472) 0.775 ( 0.379, 1.181) 1.618 ( 0.941, 1.976)
ఓ೓ -3.074 ( -3.547, -2.635) -3.554 ( -3.966, -3.162) -3.972 ( -4.188, -3.630)
ఘ 0.979 ( 0.966, 0.989) 0.936 ( 0.872, 0.971) -0.046 ( -0.716, 0.665)
ఙആ 0.078 ( 0.065, 0.095) 0.124 ( 0.093, 0.172) 0.201 ( 0.125, 0.323)
ఓ -0.003 ( -0.004, -0.001) -0.004 ( -0.008, -0.000) -0.004 ( -0.010, 0.002)
ఔ 26.780 ( 12.582, 92.099) 54.791 ( 14.564, 99.487) 56.355 ( 10.729, 99.942)

10y ఊ 0.001 ( -0.326, 0.399) 0.609 ( 0.069, 1.177) 1.542 ( 0.739, 1.973)
ఓ೓ -2.876 ( -3.461, -2.383) -3.456 ( -4.117, -2.846) -4.172 ( -4.518, -3.572)
ఘ 0.976 ( 0.962, 0.987) 0.953 ( 0.911, 0.981) -0.066 ( -0.694, 0.716)
ఙആ 0.081 ( 0.068, 0.099) 0.115 ( 0.089, 0.153) 0.204 ( 0.128, 0.329)
ఓ -0.002 ( -0.004, -0.001) -0.003 ( -0.007, 0.001) -0.004 ( -0.011, 0.003)
ఔ 37.290 ( 14.765, 96.539) 57.428 ( 15.238, 99.564) 53.915 ( 9.250, 99.428)

30y ఊ -0.401 ( -0.736, -0.045) -0.030 ( -0.734, 0.727) 1.437 ( 0.357, 1.964)
ఓ೓ -2.323 ( -2.892, -1.787) -2.757 ( -3.758, -1.819) -4.348 ( -4.904, -3.242)
ఘ 0.968 ( 0.949, 0.981) 0.959 ( 0.921, 0.984) 0.128 ( -0.629, 0.834)
ఙആ 0.084 ( 0.070, 0.104) 0.112 ( 0.086, 0.151) 0.211 ( 0.128, 0.344)

Table 23. Bayesian estimation results for individual constant elasticity of sto-
chastic of volatility (CEV-SV) models.
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Swap

Maturity
Parameter

Full sample 4-year sample 1-year sample
Posterior Posterior Posterior Posterior Posterior Posterior
Median 95% Bounds Median 95% Bounds Median 95% Bounds

ఓ -0.000 ( -0.001, 0.000) -0.002 ( -0.003, -0.001) 0.001 ( -0.001, 0.003)
1y ఙ̄ 1.000 ( 1.000, 1.000) 1.000 ( 1.000, 1.000) 1.000 ( 1.000, 1.000)

ఊ 0.254 ( 0.210, 0.298) 0.730 ( 0.628, 0.835) 1.871 ( 1.495, 1.995)
ఓ -0.001 ( -0.002, -0.000) -0.003 ( -0.004, -0.002) 0.000 ( -0.002, 0.002)

2y ఙ̄ 1.175 ( 1.114, 1.241) 0.933 ( 0.863, 1.008) 0.517 ( 0.344, 0.801)
ఊ 0.281 ( 0.230, 0.332) 0.636 ( 0.519, 0.752) 0.917 ( 0.218, 1.648)
ఓ -0.002 ( -0.003, -0.001) -0.004 ( -0.005, -0.002) -0.001 ( -0.003, 0.001)

3y ఙ̄ 1.261 ( 1.181, 1.346) 0.898 ( 0.822, 0.981) 0.492 ( 0.364, 0.684)
ఊ 0.238 ( 0.180, 0.298) 0.619 ( 0.504, 0.741) 1.041 ( 0.307, 1.755)
ఓ -0.002 ( -0.003, -0.001) -0.005 ( -0.006, -0.003) -0.002 ( -0.004, 0.000)

4y ఙ̄ 1.374 ( 1.266, 1.490) 0.883 ( 0.789, 0.986) 0.448 ( 0.373, 0.581)
ఊ 0.173 ( 0.102, 0.243) 0.597 ( 0.465, 0.726) 1.317 ( 0.602, 1.905)
ఓ -0.002 ( -0.003, -0.001) -0.005 ( -0.007, -0.003) -0.003 ( -0.006, 0.000)

5y ఙ̄ 1.534 ( 1.390, 1.698) 0.921 ( 0.804, 1.063) 0.409 ( 0.334, 0.536)
ఊ 0.110 ( 0.026, 0.190) 0.514 ( 0.362, 0.658) 1.162 ( 0.445, 1.805)
ఓ -0.002 ( -0.003, -0.001) -0.005 ( -0.007, -0.003) -0.004 ( -0.007, 0.000)

7y ఙ̄ 1.899 ( 1.667, 2.170) 1.051 ( 0.867, 1.275) 0.428 ( 0.289, 0.650)
ఊ -0.048 ( -0.150, 0.052) 0.358 ( 0.180, 0.538) 0.823 ( 0.104, 1.550)
ఓ -0.003 ( -0.004, -0.001) -0.006 ( -0.008, -0.003) -0.006 ( -0.010, -0.001)

10y ఙ̄ 2.425 ( 2.057, 2.863) 1.266 ( 0.984, 1.646) 0.378 ( 0.224, 0.690)
ఊ -0.190 ( -0.310, -0.073) 0.213 ( -0.009, 0.427) 0.947 ( 0.177, 1.650)
ఓ -0.002 ( -0.003, -0.001) -0.006 ( -0.008, -0.003) -0.005 ( -0.011, 0.000)

30y ఙ̄ 4.687 ( 3.738, 5.897) 2.602 ( 1.787, 3.805) 0.365 ( 0.183, 0.883)
ఊ -0.574 ( -0.726, -0.424) -0.292 ( -0.574, -0.006) 0.952 ( 0.110, 1.642)
ఓ഑ -3.775 ( -3.828, -3.722) -3.517 ( -3.596, -3.433) -2.941 ( -3.198, -2.773)
ఘ 0.244 ( 0.203, 0.284) 0.226 ( 0.153, 0.300) 0.164 ( 0.005, 0.318)
ఙആ 0.715 ( 0.694, 0.735) 0.632 ( 0.600, 0.667) 0.524 ( 0.468, 0.586)

Table 24. Bayesian estimation results for multivariate CEV model with common
stochastic volatility.

9.4. Level-dependent or Stochastic Volatility? Figure 10 presents two comparisons of the esti-
mated level-dependent and stochastic volatilities from univariate set of models (9.1), over the full
sample, surrounded by fanning out posterior distributions to highlight the estimation uncertainty.
The top plot corresponds to the short end of the yield curve, while the bottom plot corresponds to
the long end. Both plots are shown in logs, so that the constant shift between the two fan charts
in each plot can be used as the measure of relative strength for the two sources, while variabil-
ity of the two over time can be used to indicate, on a forward-looking basis, the strength of the
ability to evaluate risk. The relative strength is not identified in univariate models, so only the sec-
ond distinction between the two sources can be assessed. The fanchart plot makes it apparent
that CEV feature is mainly responsible for slowly evolving component of the rates volatility while
the stochastic volatility tends to describe faster moving dynamic forces. The distinction becomes
more pronounced at the intermediate maturities (not shown) and maxes out at the long end.
The distinction becomes even more stark in the multivariate versions because of the diminished
persistence of the stochastic volatility process (not shown).

The two sources of uncertainty can be combined to produce posterior predictive fancharts,
similar to Cogley, Morozov, and Sargent (2005).



50 SERGEI MOROZOV

Swap

Maturity
Parameter

Full sample 4-year sample 1-year sample
Posterior Posterior Posterior Posterior Posterior Posterior
Median 95% Bounds Median 95% Bounds Median 95% Bounds

1y ఓ -0.001 ( -0.001, 0.000) -0.002 ( -0.003, -0.001) 0.001 ( -0.001, 0.003)
ఙ̄ 1.000 ( 1.000, 1.000) 1.000 ( 1.000, 1.000) 1.000 ( 1.000, 1.000)

2y ఓ -0.001 ( -0.002, -0.000) -0.003 ( -0.005, -0.002) 0.000 ( -0.002, 0.002)
ఙ̄ 1.183 ( 1.139, 1.230) 0.952 ( 0.887, 1.022) 0.892 ( 0.782, 1.014)

3y ఓ -0.002 ( -0.003, -0.001) -0.004 ( -0.006, -0.003) -0.001 ( -0.003, 0.001)
ఙ̄ 1.196 ( 1.149, 1.246) 0.899 ( 0.827, 0.978) 0.743 ( 0.639, 0.862)

4y ఓ -0.002 ( -0.003, -0.001) -0.005 ( -0.006, -0.003) -0.002 ( -0.004, 0.000)
ఙ̄ 1.186 ( 1.136, 1.238) 0.859 ( 0.780, 0.944) 0.603 ( 0.496, 0.745)

5y ఓ -0.002 ( -0.003, -0.001) -0.005 ( -0.007, -0.003) -0.003 ( -0.006, 0.000)
ఙ̄ 1.202 ( 1.150, 1.257) 0.829 ( 0.746, 0.923) 0.522 ( 0.410, 0.682)

7y ఓ -0.002 ( -0.004, -0.001) -0.005 ( -0.007, -0.003) -0.004 ( -0.007, 0.000)
ఙ̄ 1.165 ( 1.112, 1.221) 0.788 ( 0.698, 0.888) 0.425 ( 0.309, 0.609)

10y ఓ -0.003 ( -0.004, -0.002) -0.006 ( -0.008, -0.003) -0.005 ( -0.010, -0.001)
ఙ̄ 1.166 ( 1.110, 1.226) 0.768 ( 0.673, 0.876) 0.356 ( 0.244, 0.547)

30y ఓ -0.002 ( -0.003, -0.001) -0.005 ( -0.008, -0.003) -0.005 ( -0.011, 0.001)
ఙ̄ 1.173 ( 1.113, 1.235) 0.768 ( 0.667, 0.885) 0.304 ( 0.194, 0.510)
ఊ 0.364 ( 0.327, 0.401) 0.680 ( 0.604, 0.754) 1.412 ( 1.099, 1.688)
ఓ഑ -3.848 ( -3.899, -3.796) -3.531 ( -3.605, -3.455) -3.232 ( -3.456, -3.026)
ఘ 0.269 ( 0.229, 0.309) 0.214 ( 0.141, 0.287) 0.157 ( -0.001, 0.311)
ఙആ 0.723 ( 0.703, 0.745) 0.631 ( 0.599, 0.666) 0.521 ( 0.465, 0.583)

Table 25. Bayesian estimation results for common elasticity of stochastic volatil-
ity models.

10. Stochastic Elasticity of Volatility

Having explored possibilities of variable elasticity of volatility and having found rich diversity of
shapes across sub-samples, perhaps we should allow the elasticity of volatility to have its own
stochastic driver, in a manner akin to the stochastic volatility model explored in section 9.

Δ𝑟௧ = 𝜇௥ + 𝜎𝑟ఊ೟௧ିଵ𝜖௧ , 𝜖௧ ∼ 𝒩 (0, 1) ,

𝛾௧ =
3
2
𝑒ଶ௭೟ − 1
𝑒ଶ௭೟ + 1 + 1

2 ,

𝑧௧ = 𝜇௭ + 𝜌 (𝑧௧ିଵ − 𝜇௭) + 𝜎ఎ𝜂௧ , 𝜂௧ ∼ 𝒩 (0, 1) ,

(10.1)

where for simplicity and to relieve computational burden we model each tenor separately and
assume Gaussian residual distributions. The second equation in the system is designed to limit
the range of elasticities between −1 and 2. Models like this are potentially useful to appreciate
the range of uncertainty associated with elasticity of volatility and to gauge direction of recent
trends.

The outcomes of the MCMC estimation of posterior distributions are summarized in table 26
for each tenor and each sub-sample. The table is complemented with an example in Figure 11.
In this and similar plots for other maturities and sample periods, the elasticity of volatility is highly
persistent but is by no means close to constant as it vacillates widely within the posterior range
reported in Table 17. Thus, the results are not particularly illuminating in explaining the driving
forces behind the elasticity dynamics and extended examination of these may be warranted in
the future research. For example, if we were to employ Student 𝑡 residuals, the extent of elasticity
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Figure 10. Time-varying level-dependent and stochastic volatilities.

variation would be somewhat reduced (not shown). It is also possible to introduce covariates in
the last equation in (10.1), as well as a form of leverage coupling together the measurement
and state innovations.
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Swap

Maturity
Parameter

Full sample 4-year sample 1-year sample
Posterior Posterior Posterior Posterior Posterior Posterior
Median 95% Bounds Median 95% Bounds Median 95% Bounds

ఓ 0.000 ( -0.001, 0.001) -0.000 ( -0.001, 0.001) 0.001 ( -0.002, 0.003)
ఙ 0.050 ( 0.046, 0.054) 0.056 ( 0.051, 0.061) 0.063 ( 0.057, 0.070)

1y ఓ೥ -0.132 ( -1.039, 1.097) 1.010 ( -0.979, 3.415) 2.580 ( -1.178, 7.670)
ఘ 0.995 ( 0.989, 0.999) 0.989 ( 0.969, 0.999) 0.979 ( 0.798, 0.999)
ఙആ 0.094 ( 0.079, 0.112) 0.193 ( 0.136, 0.282) 0.315 ( 0.161, 0.789)
ఓ -0.000 ( -0.002, 0.001) -0.001 ( -0.003, 0.001) 0.000 ( -0.002, 0.003)
ఙ 0.045 ( 0.042, 0.049) 0.048 ( 0.043, 0.052) 0.060 ( 0.055, 0.067)

2y ఓ೥ -0.028 ( -0.294, 0.282) 0.417 ( -1.224, 2.586) 3.077 ( -0.089, 8.966)
ఘ 0.988 ( 0.978, 0.996) 0.987 ( 0.959, 0.999) 0.953 ( 0.710, 0.998)
ఙആ 0.073 ( 0.062, 0.086) 0.220 ( 0.156, 0.321) 0.530 ( 0.268, 1.332)
ఓ -0.001 ( -0.003, 0.001) -0.002 ( -0.004, 0.001) -0.000 ( -0.003, 0.003)
ఙ 0.049 ( 0.046, 0.053) 0.050 ( 0.046, 0.054) 0.054 ( 0.049, 0.059)

3y ఓ೥ -0.053 ( -0.580, 0.852) 0.441 ( -2.090, 4.182) 3.701 ( -2.423, 11.487)
ఘ 0.994 ( 0.984, 0.999) 0.994 ( 0.979, 1.000) 0.967 ( 0.533, 0.999)
ఙആ 0.063 ( 0.055, 0.074) 0.144 ( 0.108, 0.198) 0.617 ( 0.301, 1.805)
ఓ -0.002 ( -0.004, 0.000) -0.003 ( -0.006, -0.000) -0.001 ( -0.005, 0.003)
ఙ 0.046 ( 0.042, 0.050) 0.045 ( 0.041, 0.049) 0.046 ( 0.042, 0.050)

4y ఓ೥ -0.128 ( -0.239, 0.023) 0.221 ( -0.646, 2.203) 7.749 ( 1.941, 24.533)
ఘ 0.975 ( 0.955, 0.991) 0.986 ( 0.937, 0.999) -0.126 ( -0.804, 0.938)
ఙആ 0.064 ( 0.055, 0.076) 0.117 ( 0.091, 0.158) 0.203 ( 0.127, 0.564)
ఓ -0.002 ( -0.004, -0.000) -0.004 ( -0.008, -0.001) -0.003 ( -0.009, 0.003)
ఙ 0.050 ( 0.045, 0.055) 0.046 ( 0.042, 0.052) 0.049 ( 0.044, 0.055)

5y ఓ೥ -0.228 ( -0.320, -0.138) -0.121 ( -0.305, 0.038) -0.957 ( -5.073, 3.564)
ఘ 0.959 ( 0.938, 0.974) 0.912 ( 0.811, 0.966) 0.961 ( 0.528, 0.998)
ఙആ 0.067 ( 0.057, 0.079) 0.137 ( 0.100, 0.195) 0.499 ( 0.228, 1.663)
ఓ -0.003 ( -0.005, -0.001) -0.005 ( -0.009, -0.001) -0.005 ( -0.011, 0.001)
ఙ 0.068 ( 0.059, 0.079) 0.068 ( 0.057, 0.080) 0.070 ( 0.060, 0.079)

7y ఓ೥ -0.445 ( -0.580, -0.336) -0.543 ( -1.454, -0.190) -1.379 ( -4.370, -0.127)
ఘ 0.963 ( 0.940, 0.981) 0.975 ( 0.922, 0.998) 0.920 ( -0.633, 0.998)
ఙആ 0.065 ( 0.056, 0.078) 0.104 ( 0.081, 0.137) 0.300 ( 0.160, 0.804)
ఓ -0.003 ( -0.005, -0.001) -0.005 ( -0.008, -0.001) -0.005 ( -0.012, 0.001)
ఙ 0.097 ( 0.080, 0.117) 0.094 ( 0.076, 0.112) 0.089 ( 0.073, 0.106)

10y ఓ೥ -0.686 ( -0.896, -0.528) -0.782 ( -1.826, -0.318) -1.395 ( -4.020, 0.208)
ఘ 0.970 ( 0.949, 0.986) 0.979 ( 0.941, 0.998) 0.965 ( -0.336, 0.998)
ఙആ 0.070 ( 0.059, 0.084) 0.102 ( 0.081, 0.133) 0.223 ( 0.132, 0.523)
ఓ -0.002 ( -0.004, -0.000) -0.003 ( -0.007, 0.001) -0.005 ( -0.013, 0.002)
ఙ 0.150 ( 0.127, 0.172) 0.141 ( 0.115, 0.163) 0.132 ( 0.106, 0.153)

30y ఓ೥ -1.103 ( -1.370, -0.898) -1.136 ( -2.073, -0.689) -1.653 ( -5.074, 0.453)
ఘ 0.972 ( 0.951, 0.986) 0.978 ( 0.941, 0.997) 0.975 ( 0.784, 0.999)
ఙആ 0.086 ( 0.070, 0.108) 0.116 ( 0.088, 0.158) 0.210 ( 0.127, 0.408)

Table 26. Bayesian estimation results stochastic elasticity of volatility models.

Models with latent state variables, such as those described in this and the previous sections,
are intricate and time-consuming to analyze. Outside of a limited number of special cases, ad-
vancing beyond a small collection of risk factors into a wider range of sources influencing risk
measurement for a large portfolio is not currently practical with non-linear or non-Gaussian state
space models. Therefore, these models are only recommended for the in-depth study of the most
fundamentally important factors. Arguably, USD swap rates are among these.
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Figure 11. Distribution of stochastic elasticity of volatility profile for 1-year swap
maturity.

11. Non-parametric Volatility Function

11.1. Local Volatility Profiles. More general encompassing alternative is to start with a general
continuous time diffusion specification

(11.1) 𝑑𝑟௧ = 𝜇 (𝑟௧) + 𝜎 (𝑟௧) 𝑑𝑊௧ .

Several authors developed the idea of letting the diffusion coefficient of the instantaneous
rate process to be modeled by the data themselves through an approach based on the non-
parametric estimation of the conditional density of the series. The clear advantage of non-
parametric specification is its flexibility.

Among several competing estimators, estimator of Stanton (1997) is lauded as simple and
reliable by a comparative study of Renò, Roma, and Schaefer (2006).24 It is given by

(11.2) ෝ𝜎ଶ (𝑟) = ∑்ିଵ
௧ୀଵ (𝑟௧ାଵ − 𝑟௧)ଶ𝒦൫ ௥ି௥೟௛ ൯

∑்ିଵ
௧ୀଵ 𝒦൫ ௥ି௥೟௛ ൯

,

where 𝒦 (𝑥) is a kernel function that depends on the smoothing parameter (bandwidth) ℎ.
Gaussian kernel 𝒦 (𝑥) = ଵ

√ଶగ
exp ൫−𝑥ଶ/2൯ is a convenient and common choice. The choice of

24Fan and Zhang (2003) examine higher order approximations and findthat a reduction in asymptotic biases must be
paid for with nearly exponentially escalating asymptotic variances. On the other hand, they argue that using local linear
regression of squared changes on levels is a better alternative to local constant regression embedded inside estimator
(11.2) in terms of boundary biases.
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the smoothing parameter ℎ regulates the tradeoff between bias and efficiency. For the estimator
(11.2), Stanton (1997) recommends

(11.3) ℎ = 4ෞstd (𝑟௧) 𝑇ି
భ
ఱ .

Estimator (11.2) is intuitive. Indeed, one can recognize it as the average of squared differences
weighted by a kernel function. With uniform kernel, the estimator amounts tothe sample variance
localized to the neighborhood of the point of interest. As one moves the spread value of interest
through its range, the neighborhood moves as well and the estimate continually updated. With
Gaussian kernel, diminishing consideration is given to the moves that occurred further away from
the point of interest. Using Gaussian kernel allows selection of kernel bandwidth without worry
about it being smaller than the minimal gap between observed rate which would pose a problem
for kernels with finite support. An alternative interpretation of (11.2) is via local constant kernel
regression of squared moves on the pre-move levels.25 This interpretation can be used to replace
recommended bandwidth (11.3) with more general bandwidth obtained by least squares cross-
validation. Least squares cross-validation using our interest rate dataset, not shown, suggests
that Stanton rule tends to oversmooth the volatility profile, but cross-validated bandwith results
in peculiarly wiggly shapes that are harder to interpret.

We implemented Gaussian kernel estimator (11.2) on our interest rate swap example. Uni-
variate time-series results fall roughly in the three sub-groups. Short maturities (one to three
year) are exemplified by profiles in the upper left panel of Figure 12 with upward sloping volatility
shape based on four year sample and flat profiles based on either full sample or the most recent
year. For medium maturities, shown in the upper right panel, volatility profile based on the most
recent year is no longer flat but is rising gently. At the long end, profiles based on full sample
and four year history exhibit volatility that declines with level, while the profile based on the most
recent year slopes steeply upward, as can be seen in the lower left panel. The lower right panel
of the figure pools all maturities together and estimates volatility profile assuming the same rela-
tionship across all maturities.26 In this setting, profiles based on full sample and four year history
exhibit rising and falling edges, while the profile based on the most recent year rises up.

The volatility profiles in Figure 12 help interpret earlier parametric results, particularly with
regard to parameter instability across different subsamples as well as poor fit of some parametric
models. For example, fitting a linear relationship to full sample profiles (red lines) over the entire
range of interest rates is likely to result in virtually flat volatility profile with an attendant conclusion
that the series should be represented as differences. On the other hand, limiting ourselves to the
four year history, we find almost linearly increasing profiles for all maturities less than 30-year,
indicating preference for the return specification for all maturities except 30-year.

11.2. Local Directional Volatility Profiles. In the spirit of section 6, it is possible to explore non-
parametrically whether upward and downward elasticity profiles are different. This could be done
by constraining non-parametric volatility estimator to subset of only upward and only downward
moves. Doing so results in the volatility profiles shown in Figure 13. These profiles are consistent
with the idea that downward moves are more likely to be represented as relative changes, since
these profile tend to flatten at higher rate levels. Combining all maturities and using the longest

25More elaborate local linear kernel regression may result in negative fitted variance when projected outside the
range of observed data.

26Pooling across maturities improves the bandwidth selection. It could be used as a preliminary step for an individual
maturity volatility profile estimation, as in Sam and Jiang (2009).
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Figure 12. Non-parametric level-dependent volatility profiles for US dollar in-
terest rate swap rates.

sample, the location of the switch is roughly 20 basis points higher for moves up than for moves
down.

11.3. Estimation Uncertainty. Non-parametric estimators such as (11.2) are subject to estima-
tion uncertainty that can be quite substantial in small samples. One way to create confidence
envelopes about non-parametric volatility profiles is to resample the set of residuals ො𝜖௧ = ୼௥೟ିෝఓ

ෝఙ೓(௥೟షభ)
.

In this method, bootstrap sample { ෤𝜖௧}்௧ୀଵ repeatedly feeds into synthetic observations ෤𝑟௧ and a
new estimated volatility profile. A typical example is shown in Figure 14 for 30-year swap rates.
It shows that although confidence bands are loose, the general shape remains consistent. The
bands could be used to assess informally whether a parametric profile is within the confidence
set of non-parametric estimator.

11.4. Testing Parametric Models against Non-parametric Alternative. A more formal compar-
ison of parametric and non-parametric results can be made with the help of Generalized Likeli-
hood Ratio test (Fan, Zhang, and Zhang, 2001; Fan and Zhang, 2003).27

27Further specifications tests of diffusion models can be found in Gallant and Tauchen (1996), Aït-Sahalia (1996),
Corradi and Swanson (2005), as well as Hong and Li (2005).
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Figure 13. Level-dependent directional volatility in US dollar interest rate swap rates.

The test statistic is given by

(11.4) 𝑔(ℎ) = 𝑇 − 1
2 log 𝑅𝑆𝑆଴

𝑅𝑆𝑆ଵ(ℎ)
,

where 𝑅𝑆𝑆଴ represents the residual sum of squares under a parametric null hypothesis

(11.5) log (Δ𝑟௧ − ෝ𝜇)ଶ = log ൫ෝ𝜎ଶ(𝑟௧ିଵ)൯ + log ൫𝜖ଶ௧ ൯ ,
while 𝑅𝑆𝑆ଵ(ℎ) is the residual sum of squares under a non-parametric alternative

(11.6) log (Δ𝑟௧ − ෝ𝜇)ଶ = log ൫ෝ𝜎ଶ௛(𝑟௧ିଵ)൯ + log ൫𝜖ଶ௧ ൯ .
The test statistic can be viewed as ameasure of distance between parametric and non-parametric
profiles. Finite sample distributions of 𝑔 for the trio of parametric elasticity models developed in
preceding sections are not known. Instead, we can approximate the empirical null distributions
of the GLR test statistics using a regression bootstrap method. Given fixed parameter estimates,
this method repeatedly feeds standardized residuals into the model in order to generate artificial
interest rate time-series. Each such time-series gives rise to simulated values for 𝑅𝑆𝑆଴, 𝑅𝑆𝑆ଵ
and, ultimately, 𝑔.

Results of the test are shown in Table 27. We can see some visible improvements in p-values
for sigmoid variable elasticity version for the longest and shortest sample periods for certain
maturities, but, overall, we cannot conclude that our attempts to model volatility parametrically
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Figure 14. Estimation uncertainty of Stanton estimator of level-dependent
volatility in 30-year US dollar interest rate swap rates. Stanton estimator is
given by the red curve. Parametric alternatives are shown in black (differences)
and brown (returns).

Swap Maturity
Constant Elasticity Sigmoid Elasticity Piecewise Elasticity

Full
sample

4-year
sample

1-year
sample

Full
sample

4-year
sample

1-year
sample

Full
sample

4-year
sample

1-year
sample

1y 0.000 0.000 0.000 0.011 0.000 0.170 0.000 0.000 0.000
2y 0.000 0.000 0.000 0.092 0.000 0.000 0.000 0.000 0.000
3y 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000
4y 0.000 0.000 0.000 0.113 0.000 0.000 0.000 0.000 0.000
5y 0.000 0.000 0.000 0.309 0.000 0.001 0.000 0.000 0.000
7y 0.000 0.000 0.002 0.258 0.001 0.283 0.000 0.000 0.002
10y 0.000 0.000 0.001 0.409 0.000 0.315 0.000 0.000 0.018
30y 0.011 0.000 0.000 0.000 0.000 0.215 0.000 0.000 0.003

Table 27. P-values of Generalized Likelihood Ratio test of various parametric
models against non-parametric diffusion estimator.

were particularly successful. This is probably because parametric models to do not capture fully
downward sloping volatility at high levels.

11.5. Implications. Estimated diffusion coefficient function opens up the possibility for switching
the risk form depending on the contemporaneous level, either between returns and differences
or among a continuum of alternative fractional elasticities. Bottom right panel of Figure 12 is
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particularly exhortatory as it suggests a cutoff level of about 280 basis points below which the
interest rates are best treated according to a proportional change law.

While the guidance that non-parametric methods provide is instructive, it should be empha-
sized that the cloud of uncertainty surrounding the diffusion shapes could be uncomfortably large
unless the sample size is substantial. This is because there is no free lunch in statistics and not
having to make a strong parametric assumption must be paid for by the loss of statistical effi-
ciency, embodied in the wide confidence intervals. Point estimates such as those in Figure 12
ignore estimation uncertainty and, hence, should be taken with a grain of salt. Nonetheless,
when taken as but one element of the battery of statistical methods aimed at settling the func-
tional form choice, the non-parametric techniques could be a dependable final nail in the coffin
of a dubious risk form proposal, such as the difference representation when the rates are low.

12. Concluding Remarks

Driven by the need to provide statistical basis to the functional form selection, we have de-
scribed a number of techniques to help make that choice. The paper illustrated three kinds of
approaches. In the first category are largely informal and often inconclusive non-encompassing
methods that rank alternative functional forms on the basis of the stationarity tests, goodness-
of-fit measures and stochastic complexity. In the second category of methods, we assume para-
metric elasticity of variance representation of the data generating process. Here, we attain formal
statistical ground to select between the two alternatives that are now nested in a more general
specification. Within this class we further distinguish three estimation approaches that hinge upon
willingness to make additional distributional assumptions about model residuals, dependence
structure across multiple related time-series, or ability to put informative priors on parameters of
interest. In essence, the GMM, maximum likelihood and Bayesian methods allow us to refine
bias-variance trade-off within the constant elasticity class of models. Obvious cost to the para-
metric methods such as assuming constant elasticity of variance structure is a nagging concern
about misspecification. Tight standard errors are of no use if maintained assumptions are at odds
with the true data generating process. Making elasticity variable is perfectly feasible except for
the very wide gamut of alternative choices. Third and final category of methods is designed to
mitigate the misspecification concern by appealing to non-parametric approaches and allows us
to estimate the diffusion coefficient without assuming its functional form but making instead more
general assumptions such as dimensionality, smoothness and existence of moments. Treating
diffusion coefficient as an unknown function of the level of the series makes it possible to con-
dition the current choice of functional form representation on the most recent values of the time
series, switching between the two as conditions change. The cost is a loss of statistical efficiency.
Thus, all three categories are best used together allowing one to move along the bias-variance
trade-off frontier and make an educated functional form choice. This course of action was illus-
trated on an interest rate dataset where we were able to achieve a fairly robust conclusion that
all series in this dataset should be treated in the return space for the short-to-medium-term risk
measurement practice, at least until normalization of the interest rates takes them back above
2.8%.

Our final recommendation is to start with non-parametric profiles. Notwithstanding significant
estimation uncertainty, these profiles can inform selection of a pertinent parametric model, es-
pecially if varying elasticity is in order. Armed with the estimated elasticity profiles, an analysis
can proceed to formulating an appropriate variable elasticity model in order to refine and buttress
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initial impressions, selecting between the two alternatives as befits the relevant span of data and
a purpose of selection. With this in mind, the choice of the risk functional specification will have
meandering souls despair in the dark desert of ignorance no longer.

Appendix A. Histogram Binning with Thresholded Haar Wavelets

The Haar wavelet density estimator for a density ̂𝑓(𝑥) based on a sample {𝑥௧}்௧ୀଵ is given by
the following truncated series expansion:

(A.1) ̂𝑓(𝑥) = ෍
௞∈ℤ

𝑐̂௝బ ,௞𝜙௝బ ,௞(𝑥) +
௝భିଵ

෍
௝ୀ௝బ

෍
௞∈ℤ

𝑑̂௝,௞𝜓௝,௞(𝑥),

with Haar basis functions

𝜙௝బ ,௞(𝑥) = ቐ
2௝బ/ଶ if ଵ

௝బ logଶ 𝑘 ≤ 𝑥 < ଵ
௝బ logଶ (𝑘 + 1)

0 otherwise,

𝜓௝,௞(𝑥) =
⎧⎪
⎨⎪⎩

2௝/ଶ if ଵ௝ logଶ 𝑘 ≤ 𝑥 < ଵ
௝ logଶ ቀ𝑘 +

ଵ
ଶቁ

−2௝/ଶ if ଵ௝ logଶ ቀ𝑘 +
ଵ
ଶቁ ≤ 𝑥 < ଵ

௝ logଶ (𝑘 + 1)
0 otherwise.

(A.2)

Since these basis functions form an orthonormal basis in the space of square-integrable functions,
the coefficients can be estimated by

𝑐̂௝బ ,௞ =
1
𝑇

்

෍
௧ୀଵ

𝜙௝బ ,௞(𝑥௧),

𝑑̂௝,௞ =
1
𝑇

்

෍
௧ୀଵ

𝜓௝,௞(𝑥௧).

(A.3)

Functions 𝜙௝బ ,௞ are known as the Haar scaling functions, while functions 𝜓௝,௞ are known as Haar
wavelets. From the frequency domain perspective, the first sum in (A.1) describes low-frequency
component of the signal 𝑥௧ , while the second sum contains high-frequency detail. In view of that,
coefficients 𝑐̂௝బ ,௞ are known as the approximation coefficients and coefficients 𝑑̂௝,௞ as the detail
coefficients. 𝑗଴ is termed the primary resolution level determining the scale of the largest effects
that can be affected by smoothing inherent in the procedure. It is typically set to a value where
a single scaling function 𝜙௝బ ,௞ has the range covering the whole of the observed data. 𝑗ଵ, is the
finest resolution level, chosen to be the smallest 𝑗 for which the 𝜙௝௞(𝑥) each cover at most one of
the distinct data values. Such 𝑗ଵ is also known as the minimum inter-point distance choice. 𝑐̂௝బ ,௞
and 𝑑̂௝,௞ are known as the empirical wavelet coefficients. Efficient computation of these uses
the Daubechies-Lagarias algorithm (Daubechies and Lagarias, 1992) and the discrete wavelet
transform (Burrus, Gopinath, and Guo, 1997) instead of the direct use of (A.3), which would be
slow. In (A.3), only finitely many coefficients are non-zero.

Having computed all the empirical wavelet coefficients, the next stage is to threshold (or de-
noise) them in order to compress the large amount of superfluous details caused by the minimum
interpoint-distance method forcing each distinct data value into its own histogram bin. A number
of ways have been devised in the literature in order to do so, including level-dependent thresh-
olding rules in Donoho, Johnstone, Kerkyacharian, and Picard (1996) minimizing Stein’s unbiased
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estimators of risk, a cross-validation approach in Nason (1994), a minimum description length
principle in Kumar, Heikkonen, Rissanen, and Kaski (2006), wavelet coefficient significance tests
in Herrick, Nason, and Silverman (2001), etc. We have chosen the minimum description length
principle of Kumar, Heikkonen, Rissanen, and Kaski (2006) as a demonstration. The main idea
of this approach is to model retained wavelet coefficients by an equal width histogram at each
resolution level of the wavelet transform and the coefficients to be discarded by a single equal
bin width histogram. Minimization of the total code length gives the optimal way of dividing the
coefficients into those representing informative content and those representing extraneous noise.
The main steps are summarized as follows.

(1) Obtain the set of all wavelet coefficients through the wavelet transform up to the highest
possible level 𝑟.

(2) Recursively on resolution levels 𝑖 = 1,… , 𝑟 from finest to crudest, fit an 𝑚-bin histogram
to the coefficients of a given level 𝑖 with the equal bin width determined by the full range
of coefficients across all levels. With this histogram, select a tentative collection of bins 𝑆௜
withthe number of chose bins𝑚௜ . The bins in collection 𝑆௜ contain a total of 𝑘௜ tentatively
chosen coefficients distributed into bins of 𝑆௜ with counts 𝑛௜,(௝) for 𝑗 = 1,… ,𝑚௜ . If the
chosen coefficients are retained, the residual coefficients are defined to equal zero at
retained indices as well as for retained indices at all prior levels.

(3) Fit a histogram with 𝑀 bins to the residual coefficients across all resolution levels.
(4) Find the optimal 𝑆௜ and 𝑀 by minimizing the total code length:

min
ௌ೔ ,ெ

ቊ logଶ ൫𝑛௜,(ଵ), … , 𝑛௜,(௠೔), 𝑛௜ − 𝑘௜൯ !+ logଶ (𝑛௜ , 𝑚௜ + 1) !+ logଶ (𝜈ଵ, … , 𝜈ெ) !

+ logଶ ൫𝑀, 𝑛 − 𝑘̃௜ିଵ − 𝑘௜൯ !+𝑘௜ logଶ ቆ
𝑀𝑅
𝑚𝑅௜

ቇ + 𝑘̃௜ିଵ logଶ ቆ
𝑀
𝑅௜
ቇ

− (𝑛 − 1) logଶ𝑀 + 2 logଶ logଶ𝑀 + (𝑛 + 1) logଶ 𝑅௜ + 2 logଶ logଶ 𝑅௜ቋ,

where 𝑛௜ is the total number of coefficients at 𝑖௧௛ resolution level, 𝜈௝ is the number of
coefficients falling into the 𝑗௧௛ bin of the 𝑀-bin histogram fitted to the residual string of
coefficients, 𝑅 is the range of all wavelet coefficients, 𝑅௜ are the level-specific ranges
of the coefficients, 𝑘̃௜ିଵ = ∑௜ିଵ

௝ୀଵ 𝑘̂௝ denotes the number of retained coefficients in the
so far optimized sets 𝑆௝ , 𝑗 < 𝑖 and (𝑛ଵ, 𝑛ଶ, … , 𝑛௞) != (௡భା௡మା⋯ା௡ೖ)!

௡భ!௡మ!…௡ೖ! is the multinomial
coefficient. For the first level, this sum is zero.

The number and location of the optimally chosen bins is indicated by the retained coefficients,
with coefficients from finer levels corresponding to narrower bins.

Appendix B. Extended Critical Values of KPSS test

In order to extend the range of critical values of the KPSS test we performed a Monte Carlo
simulation using 2 billion replications of test statistics under the null using artificial samples of size
1,000. The results are tabulated in Table 28.

Appendix C. Nyblom Stability Test
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Significance Level
Critical Value

No trend Linear trend

0.000001 2.5146 0.6541
0.00001 2.0567 0.5423
0.0001 1.6121 0.4314
0.001 1.1718 0.3228

0.0025 1.0002 0.2804
0.005 0.8719 0.2487
0.01 0.7455 0.2175

0.025 0.5820 0.1773
0.05 0.4623 0.1477
0.1 0.3479 0.1190
0.2 0.2415 0.0914
0.3 0.1845 0.0755
0.4 0.1467 0.0643
0.5 0.1189 0.0555
0.6 0.0969 0.0480
0.7 0.0786 0.0413
0.8 0.0622 0.0348
0.9 0.0460 0.0278

0.95 0.0365 0.0234
0.975 0.0303 0.0202
0.99 0.0248 0.0172

0.995 0.0218 0.0155
0.9975 0.0194 0.0142
0.999 0.0170 0.0127

0.9999 0.0129 0.0101
0.99999 0.0104 0.0084

0.999999 0.0088 0.0072

Table 28. Extended (right-sided) critical values of KPSS test.

Let 𝜃 bethe vector of model parameters partitioned as ቆ𝜃
ଵ

𝜃ଶቇ. The second group of parameters,

𝜃ଶ is treated as constant. The martingale formulation underlying the Nyblom test is

𝔼 ൫𝜃ଵ௧ − 𝜃ଵ௧ିଵหℐ௧ିଵ൯ = 0
𝔼 ቀ൫𝜃ଵ௧ − 𝜃ଵ௧ିଵ൯ ൫𝜃ଵ௧ − 𝜃ଵ௧ିଵ൯

ᇱ หℐ௧ିଵቁ = 𝛿ଶ𝑉௧

for some adapted sequence of information sets ℐ௧ and a known array 𝑉௧ . If 𝑉௧ is constant, the
case of constant instability hazard obtains.

The null and alternative hypotheses of the Nyblom test are

𝐻଴ ∶ 𝛿ଶ = 0 𝐻ଵ ∶ 𝛿ଶ > 0

For a single observation, define the score vector 𝒮ఏభఛ = డ
డఏభ log ℒఛ ൫𝜃

ଵ, 𝜃ଶ൯ and the Hessian

of log-likelihood ℋఏభఏభ
ఛ = డమ

డఏభడఏభᇲ log ℒఛ ൫𝜃
ଵ, 𝜃ଶ൯. For the entire sample, 𝒮ఏభ = ∑ఛ 𝒮ఏ

భ
ఛ and

ℋఏభఏభ = ∑ఛℋఏభఏభ
ఛ
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Under constant instability hazard, the test statistics takes form

𝐿 = 1
𝑇 trቌ𝑉

்ିଵ

෍
௧ୀଵ

ቌ
௧

෍
ఛୀଵ

ෝ𝒮ఏభఛ ቍቌ
௧

෍
ఛୀଵ

ෝ𝒮ఏభఛ ቍ
ᇱ

ቍ .

If we further assume 𝑉 = −ቀෞℋఏభఏభቁ
ିଵ
, the asymptotic distribution of 𝐿 is invariant to nuisance

parameters.

Specializing the above to the CEV model with Student 𝑡 residuals relies on the following ana-
lytic results.

𝒮ఊ௧ =
𝜈 ቀ(Δ𝑟௧ − 𝜇)ଶ − 𝜎ଶ𝑟ଶఊ௧ ቁ log(𝑟௧)

(Δ𝑟௧ − 𝜇)ଶ + 𝜈𝜎ଶ𝑟ଶఊ௧
,

ℋఊఊ
௧ = −2𝜈(𝜈 + 1)𝜎ଶ(Δ𝑟௧ − 𝜇)ଶ𝑟ଶఊ logଶ(𝑟௧)

ቀ(Δ𝑟௧ − 𝜇)ଶ + 𝜈𝜎ଶ𝑟ଶఊ௧ ቁ
ଶ ,

𝒮ఔ௧ = −12 ൭log ൭1 +
𝑟ିଶఊ௧ (Δ𝑟௧ − 𝜇)ଶ

𝜈𝜎ଶ ൱ + 𝜓 ൬0, 𝜈2൰ − 𝜓ቆ0, 1 + 𝜈
2 ቇ൱

+
(Δ𝑟௧ − 𝜇)ଶ − 𝜎ଶ𝑟ଶఊ௧

2 ቀ(Δ𝑟௧ − 𝜇)ଶ + 𝜈𝜎ଶ𝑟ଶఊ௧ ቁ
,

ℋఊఔ
௧ =

(Δ𝑟௧ − 𝜇)ଶ ቀ(Δ𝑟௧ − 𝜇)ଶ − 𝜎ଶ𝑟ଶఊ௧ ቁ log(𝑟௧)

ቀ(Δ𝑟௧ − 𝜇)ଶ + 𝜈𝜎ଶ𝑟ଶఊ௧ ቁ
ଶ ,

ℋఔఔ
௧ =

2ቀ(Δ𝑟௧ − 𝜇)ସ + 𝜈𝜎ସ𝑟ସఊ௧ ቁ+𝜈ቀ(Δ𝑟௧ − 𝜇)ଶ + 𝜈𝜎ଶ𝑟ଶఊ௧ ቁቀ𝜓ቀ1, ଵାఔଶ ቁ−𝜓൫1, ఔଶ൯ቁ

4𝜈 ቀ(Δ𝑟௧ − 𝜇)ଶ + 𝜈𝜎ଶ𝑟ଶఊ௧ ቁ
ଶ ,

where 𝜓 (𝑘, ⋅) is the polygamma function.

Appendix D. Markov Chain Monte Carlo

Markov chain Monte Carlo is a general framework of specifying and simulating an irreducible
aperiodic Markov chain with an ergodic transition kernel such that the complete posterior is the
chain’s invariant distribution. Running the simulation long enough then guarantees that the
distribution of current draws is close enough to the target distribution. One particular celebrated
special case is the so called Gibbs sampler (Gelfand and Smith, 1990) where the parameters
are split into multiple blocks, parameters in one block are sampled conditional on the values
of parameters in remaining blocks and the Markov chain is constructed by cycling through the
drawing procedure for each conditional distribution. The sampler can be justified by the Clifford-
Hammersley theorem (Robert and Casella, 2000). That the stationary distribution of the resulting
chain is indeed the joint distribution of interest makes it possible to sample from joint posterior
without knowledge of either the joint density or the marginal densities of the blocks. Having
a sample from the joint posterior enables sampling from marginal posterior by simply ignoring
draws of remaining parameters.
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D.1. MCMC for CEV Model. In the case of the CEV model, the Gibbs sampler iterates through
the following four steps:

(1) sample 𝜇 from 𝑝 ቆ𝜇ቤ𝜎, 𝛾, 𝜈, {𝑟௧}்௧ୀଵቇ = 𝒩 ൫𝑚ଵ
ఓ , 𝜎ଶଵఓ൯;

(2) sample 𝜎 from 𝑝 ቆ𝜎ଶቤ𝜇, 𝛾, 𝜈, {𝑟௧}்௧ୀଵቇ = 𝑝൭𝜎ଶቤ ൜ ௥೟ିఓ
௥ം೟షభ√௨೟

ൠ
்

௧ୀଶ
൱ = ℐ𝒢 (𝑑𝑓ଵ, 𝑆ଵ);

(3) sample 𝛾 from 𝑝 ቆ𝛾ቤ𝜇, 𝜎, 𝜈, {𝑟௧}்௧ୀଵቇ;

(4) sample 𝜈 from 𝑝 ቆ𝜈ቤ𝜇, 𝜎, 𝛾, {𝑟௧}்௧ୀଵቇ.

The kernel of the conditional posterior for 𝛾 takes the following non-standard form:

(D.1) 𝑝 ቆ𝛾ቤ𝜇, 𝜎, 𝜈, {𝑟௧}்௧ୀଵቇ ∝
்

ෑ
௧ୀଶ

Γቀఔାଵଶ ቁ
Γ ൫ఔଶ൯ 𝜎𝑟

ఊ
௧ିଵ√𝜈𝜋

൭1 + 1
𝜈 ቆ

Δ𝑟௧ − 𝜇
𝜎𝑟ఊ௧ିଵ

ቇ
ଶ
൱
ି(ఔାଵ)/ଶ

.

Similarly, the kernel of conditional posterior for 𝜈 is also non-standard28:

(D.2) 𝑝 ቆ𝜈ቤ𝜇, 𝜎, 𝛾, {𝑟௧}்௧ୀଵቇ ∝
்

ෑ
௧ୀଶ

Γቀఔାଵଶ ቁ
Γ ൫ఔଶ൯ 𝜎𝑟

ఊ
௧ିଵ√𝜈𝜋

൭1 + 1
𝜈 ቆ

Δ𝑟௧ − 𝜇
𝜎𝑟ఊ௧ିଵ

ቇ
ଶ
൱
ି(ఔାଵ)/ଶ

.

Following Meyer and Yu (2000) and Chan, Choy, and Lee (2007) we make use of a freely
available Bayesian software, JAGS, (Plummer, 2011), that provides an easy and efficient imple-
mentation of the Gibbs sampler with adaptive enhancements to deal with non-standard con-
ditional posterior kernels as above (Gilks, Best, and Tan, 1995). Within the warm-up period,
the algorithm progressively builds an almost-envelope for the target density, and afterward ap-
plies Metropolis-Hasting algorithm to deliver samples from non-standard conditional posteriors.
This is designed to ensure good acceptance rate and fast exploration of the conditional posterior
distribution.

In theory, output from an MCMC sampler converges to the target posterior distribution in
the limit as the number of iterations tends to infinity. In practice, all MCMC runs are finite. By
convention, the post-adaptation MCMC output is split into two parts: an initial “burn-in”, which
is discarded, and the remainder in which convergence is assumed to be achieved. Samples from
the second part are used to create approximate summary statistics for the target distribution since
any measurable function of a stationary and ergodic sequence is itself stationary and ergodic, so
that the ergodic law of large number applies. We set the length of adaptation phase to 5,000
cycles, burn-in to 5,000 cycles and then generated 250,000 samples from the approximate
posterior. These samples were further “thinned-out” by preserving every 25th sample in order
to reduce the autocorrelation among subsequent draws. The remaining final sample of 10,000
parameter draws easily passed Heidelberger and Welch test (Heidelberger and Welch, 1983)
as well as all other convergence diagnostics listed in Gamerman (1997) and accessible through
CODA package in R.

28Right-hand side expressions in (D.1) and (D.2) are identical as both posteriors are proportional to the likelihood
function. What separates the two is that the former is a function of ఊ, and the latter is a function of ఔ. Both equations
also omit different normalization constants.
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D.2. MCMC for Multivariate CEV Model. The Gibbs sampler algorithm for the multivariate ver-
sion proceeds similarly:

(1) sample 𝜇௜ from

𝑝 ቆ𝜇௜ቤ𝜇ି௜ , 𝜎, 𝛾, 𝜈, {𝑟௜௧}ே,்௜ୀଵ,௧ୀଵቇ = 𝑝 ቆ𝜇௜ቤ𝜎௜ , 𝛾, 𝜈௜ , {𝑟௜௧}்௧ୀଵቇ = 𝒩 ቀ𝑚ଵ
ఓ೔ , 𝜎ଶଵఓ೔ቁ

for each 𝑖 = 1,… ,𝑁;
(2) sample 𝜎௜ from

𝑝 ቆ𝜎ଶ௜ ቤ𝜇, 𝜎ି௜ , 𝛾, 𝜈, {𝑟௜௧}
ே,்
௜ୀଵ,௧ୀଵቇ = 𝑝 ቆ𝜎ଶ௜ ቤ𝜇௜ , 𝛾, 𝜈௜ , {𝑟௜௧}்௧ୀଵቇ = ℐ𝒢 (𝑑𝑓ଵ, 𝑆ଵ௜)

for each 𝑖 = 1,… ,𝑁;
(3) sample 𝛾 from

𝑝 ቆ𝛾ቤ𝜇, 𝜎, 𝜈, {𝑟௜௧}ே,்௜ୀଵ,௧ୀଵቇ

∝
ே

ෑ
௜ୀଵ

்

ෑ
௧ୀଶ

Γቀఔ೔ାଵଶ ቁ
Γ ൫ఔ೔ଶ ൯ 𝜎௜𝑟

ఊ
௜௧ିଵ√𝜈௜𝜋

൭1 + 1
𝜈௜
ቆΔ𝑟௜௧ − 𝜇௜
𝜎௜𝑟ఊ௜௧ିଵ

ቇ
ଶ
൱
ି(ఔ೔ାଵ)/ଶ

;
(D.3)

(1) sample 𝜈௜ from

𝑝 ቆ𝜈௜ቤ𝜇, 𝜎, 𝛾, {𝑟௜௧}ே,்௜ୀଵ,௧ୀଵቇ = 𝑝 ቆ𝜈௜ቤ𝜇௜ , 𝜎௜ , 𝛾, {𝑟௜௧}்௧ୀଵቇ

∝
்

ෑ
௧ୀଶ

Γቀఔ೔ାଵଶ ቁ
Γ ൫ఔ೔ଶ ൯ 𝜎௜𝑟

ఊ
௜௧ିଵ√𝜈௜𝜋

൭1 + 1
𝜈௜
ቆΔ𝑟௜௧ − 𝜇௜
𝜎௜𝑟ఊ௜௧ିଵ

ቇ
ଶ
൱
ି(ఔ೔ାଵ)/ଶ(D.4)

for each 𝑖 = 1,… ,𝑁,

where 𝜇ି௜ is a shorthand for {𝜇ଵ, … , 𝜇௜ିଵ, 𝜇௜ାଵ, … , 𝜇ே}, and similarly for 𝜎ି௜ and 𝜈ି௜ symbols.

D.3. MCMC for Constant Elasticity of Stochastic Volatility and Stochastic Elasticity of Volatility
Models. Models of sections 9 and 10 are more demanding in terms of techniques required for
MCMC sampling from the joint posterior distribution as these belong to the class of nonlinear
state-space models. In model (9.1), the time-varying volatility scale 𝜎௧ is the latent state variable.
In model (10.1), the role of the latent state variable is taken by the evolving elasticity of volatility
𝛾௧ . In both cases, the entire joint posterior distribution of all latent states is needed, which is an
object whose dimension grows with the sample size.

The generic MCMC approach, as implemented in JAGS, would introduce the following se-
quence of sampling steps into the algorithm:

• Sample 𝑆௧ from 𝑝 ൫𝑆௧ห𝑆ି௧ , 𝜃൯ for all 𝑡 = 1,… , 𝑇,

where latent state 𝑆௧ is either 𝜎௧ or 𝛾௧ , depending on the model, and 𝜃 encompasses all of the
static model parameters. Such approach is inefficient and has proven to be very slow. This is
due intermingling issues of high dependence between parameters and the latent process that
makes standard Gibbs sampling strategies suboptimal (Roberts and Sahu, 1997; Papaspiliopou-
los, Roberts, and Sköld, 2007), the difficulty of designing efficient simulation schemes for sampling
from 𝑝 ൫𝑆଴∶்ห𝜃൯ and having to deal with non-standard conditional distributions.
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Optimizing sampling efficiency of nonlinear state-space model requires tailored algorithms.
Fortunately, such algorithms exist. Two classes of state of the art methods are particularly ap-
pealing. The first category encompasses sequential Monte Carlo (SMC) (Doucet, de Freitas, and
Gordon, 2001) family of methods and includes particle MCMC (Andrieu, Doucet, and Holenstein,
2010) and SMC2 (Chopin, Jacob, and Papaspiliopoulos, 2013). In the context of state-space
models, SMC-based methods sequentially approximate posterior densities of the state vector by
a set of weighted random samples, called particles, as the dimension of the state grows with
time. These are practical for a wide range of state-space models, including nonlinear and non-
Gaussian models, and they fit well to recent, highly parallel, computer architectures. The second
category is known as Hamiltonian Monte Carlo (HMC) (Liu, 2002; Neal, 2011; Hoffman and Gel-
man, 2014) that avoids correlation among successive draws by taking a series of steps informed
by first-order gradient information. We used both approaches in order to gain comfort in features
of the joint posterior distributions of parameters and unobserved volatility dynamics.

D.3.1. Particle MCMC and SMC2. The posterior distribution of a state-space model with mea-
surements 𝐗 = 𝑋ଵ∶் = {𝑋௧}்௧ୀଵ, latent state vector 𝐒 = 𝑆ଵ∶் = {𝑆௧}்௧ୀ଴ and static parameters 𝜃
can be factored as

(D.5) 𝑝 ൫𝐒, 𝜃ห𝐗൯ = 𝑝 ൫𝜃ห𝐗൯ 𝑝 ൫𝐒ห𝜃, 𝐗൯ .

Obtaining the first factor constitutes parameter estimation, while obtaining the second factor,
conditional on the value of 𝜃 drawn from the first, constitutes state estimation.

The state estimation task can be handled by the particle filter. While a large assortment of
variants is available, the most basic bootstrap particle filter works as follows:

(1) Initialization:
Draw 𝑃ௌ random samples (particles) 𝑆௝଴ ∼ 𝑝 ൫𝑆଴ห𝜃൯ for 𝑗 = 1,… , 𝑃ௌ with uniform weights
𝑤௝
଴ = 1/𝑃ௌ .

(2) Observation time iteration 𝑡 = 1,… , 𝑇:
(a) Propagation step:

Each particle is advanced to the next observation time with 𝑆௝௧ ∼ 𝑝 ቀ𝑆௧ห𝑆௔(௝,௧ିଵ)௧ିଵ , 𝜃ቁ
where 𝑎 (𝑗, 𝑡 − 1) is the index of the particle’s ancestor at the previous time.

(b) Weighting step:
Each particle at time 𝑡 is weighted with the likelihood of the new observation 𝑤௝

௧ =
𝑝 ቀ𝑋௧ห𝑆௝௧ , 𝜃ቁ. These weights are not normalized.

(c) Resampling step:
The set of weighted particles is transformed into a set with uniform weights by re-
sampling particles with replacement, where the probability of each particle being
drawn is proportional to its weight 𝑤௝

௧ . Particles with high weight tend to be repli-
cated, while particles with low weight may be eliminated. Ancestor indices for the
next time propagation step are determined in this step. At the end of this step, the
population of particles represents a properly weighted sample from 𝑝 ൫𝑆௧ห𝜃൯ in the
sense that the weights are unbiased estimated of the Radon-Nikodym derivative
between the target and proposal distribution.

(3) Smoothing:
The previous step provides samples from the filtering distribution 𝑝 ൫𝑆௧ห𝑋ଵ∶௧ , 𝜃൯ at each
𝑡 = 1,… , 𝑇. To obtain samples from the smoothing distribution 𝑝 ൫𝑆௧ห𝑋ଵ∶் , 𝜃൯, each
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terminal particle must be traced back through its ancestry. This requires storing entire
histories of all particles.

A by-product of the particle filter output is an unbiased estimator of the likelihood increments

(D.6) 𝑝 ൫𝑋௧ห𝑋ଵ∶௧ିଵ, 𝜃൯ =
1
𝑃ௌ

௉ೄ
෍
௝ୀଵ

𝑤௝
௧ ,

and of the marginal likelihood

(D.7) 𝑝 ൫𝑋ଵ∶௧ห𝜃൯ = 𝑝 ൫𝑋ଵห𝜃൯
௧

ෑ
ఛୀଶ

𝑝 ൫𝑋ఛห𝑋ଵ∶ఛିଵ, 𝜃൯ ,

for each 𝑡 = 1,… , 𝑇. Marginal likelihood of the entire observed sample, 𝑝 ൫𝑋ଵ∶்ห𝜃൯, can be
used as the model evidence in model comparison. In addition, tracing a single particle back
through its ancestry provides an unbiased state sample ෤𝑆଴∶் from the state conditional posterior
distribution 𝑝 ൫𝑆଴∶்ห𝑋ଵ∶் , 𝜃൯. The progressive exploration of the sequence of posterior distributions
𝑝 (𝑆ଵ∶௧ , 𝜃|𝑋ଵ∶௧ିଵ) is a key attraction of SMC methods as it allows the efficient reuse of samples
across different times in contrast with MCMC methods which would typically have to be rerun
for each time horizon.29

The parameter estimation task can also be handled by a variety of techniques. SMC2 ap-
proach is to replace the MCMC over parameters with SMC over parameters and works similarly
to SMC over state variables. It is initialized by drawing 𝑃ఏ uniformly weighted particles from the
prior distribution 𝑝 (𝜃). It proceeds sequentially over observation times with a series of propa-
gation, weighting and resampling steps, along with an additional rejuvenation step. An addition
of the rejuvenation step is necessary because parameters do not change in time and, conse-
quently, the propagation step is unable to reconstitute the number of unique values that may
be depleted during the resampling step. Since the purpose of the rejuvenation is to diversify
values of 𝜃-particles while preserving their distribution, it is sufficient to take a single marginal
Metropolis-Hastings step. In this step, a new value 𝜃ᇱ is proposed for each 𝜃-particle 𝜃௝௧ from
some proposal distribution 𝑞 ቀ𝜃ᇱ௧ห𝜃௝௧ ቁ. The move is accepted with probability

(D.8) minቆ1, 𝑝 ൫𝑋ଵ∶்ห𝜃
ᇱ൯ 𝑝 (𝜃ᇱ) 𝑞 ൫𝜃ห𝜃ᇱ൯

𝑝 ൫𝑋ଵ∶்ห𝜃൯ 𝑝 (𝜃) 𝑞 ൫𝜃ᇱห𝜃൯
ቇ ,

where the marginal likelihood 𝑝 ൫𝑋ଵ∶்ห𝜃ᇱ൯ is itself estimated by the particle filter (hence the SMC2

appellation). If the move is accepted, the new 𝜃 value is the new draw. Otherwise, it remains at
its previous value.

The SMC2 algorithm has the highest degree of parallelism compared to SMCmethods not rely-
ing on particle filtering for the parameter estimation task, such as the particle marginal Metropolis-
Hastings (PMMH) algorithm (Andrieu, Doucet, and Holenstein, 2010). This is because both pa-
rameter and state particles can be manipulated simultaneously, except that resampling step
needs to be synchronous.

29SMC2 is a sequential but not an on-line algorithm since the computational load to maintain constant Monte Carlo
error increases with time iterations (Chopin, Jacob, and Papaspiliopoulos, 2013). The difficulty of finding a genuinely
generic on-line algorithm that would provide constant Monte Carlo error at a constant computational cost seems to be
related to the fact that the target density is of increasing dimension.
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The LibBi software library by Murray (2013) implements above SMC algorithms while sup-
porting several hardware architectures and high-performance computing technologies, including
multicore CPUs, MPI clusters and CUDA GPU programming on NVIDIA GPUs.

D.3.2. Hamiltonian Monte Carlo and the No-U-Turn Sampler. Hamiltonian Monte Carlo, also
known as hybrid Monte Carlo, is based on a clever scheme that explores parameter space using
the Hamiltonian dynamics of a fictitious physical system. In this system, the parameter vector
of interest represents the position of a particle whose potential energy is given by the negative
(unnormalized) probability. For each model variable, an auxiliary ”momentum” variable is intro-
duced, typically drawn independently from the standard Gaussian distribution. HMC alternates
simple updates for these momentum variables with Metropolis updates in which a new param-
eter position is proposed using the end point of simulated trajectory under Hamiltonian dynamics
propelled by previously drawn random initial kinetic energy. The benefit of the HMC proposal
is that, even for a non-physical system, the resulting moves follow the dynamics of the target
distribution more closely by taking advantage gradient information. Doing so is useful to speed-
ing up exploration of the target distribution. The differential equations of Hamiltonian dynamics
apply only to continuous variables and must be discretized for computer implementation. Sim-
ple leapfrog algorithm, also known as Störmer-Verlet integrator (Leimkuhler and Reich, 2004), is
typically used. Standard HMC simulates the trajectory for a fixed number of discrete steps of a
fixed step size.

Increased efficiency of HMC comes with two drawbacks. First, HMC requires the gradient of
the log-posterior which could be tedious or even impossible to derive in closed form. Although
automatic differentiation (Griewank and Walther, 2008) can be used to remove a user from the
task, a performance penalty remains. Second, the optimal step size and the number of steps in
the simulated trajectory are problem-specific and may require costly pilot runs to tune.

Hoffman and Gelman (2014) introduced an adaptive version of HMC, called the No-U-Turn
Sampler (NUTS) that eliminates the need to tune the number of steps. NUTS uses a recursive
algorithm that builds a set of candidate points dispersed over the target distribution and uses a
geometric criterion that stops a trajectory when it begins to double back and retrace its steps.
Once the trajectory is stopped, NUTS uses slice sampling to select a state along the trajectory as
the next proposal. In addition, Hoffman and Gelman (2014) provide a method for adapting the
global step sizes for each parameter to optimize a target Metropolis-Hastings rejection rate. The
method is based on a modification of the primal-dual algorithm of Nesterov (2009) for stochastic
optimization with vanishing adaptation. Altogether, NUTS can be run with no hand tuning to the
shape of high-dimensional target distributions at all. The algorithm has been implemented as
part of the new open-source Bayesian inference package called Stan (Stan Development Team,
2013). Stan includes modeling language similar to JAGS that allows writing models in familiar
notation that could be transformed into efficient C++ code and then compiled into an executable.
The results reported in sections 9 and 10 were obtained with Stan using the NUTS algorithm
and were checked against posterior samples generated using LibBi.
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