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Abstract

We estimate a Bayesian vector autoregression for the U.K. with drifting coef-
ficients and stochastic volatilities. We use it to characterize posterior densities
for several objects that are useful for designing and evaluating monetary pol-
icy, including local approximations to the mean, persistence, and volatility of
inflation. We present diverse sources of uncertainty that impinge on the pos-
terior predictive density for inflation, including model uncertainty, policy drift,
structural shifts and other shocks. We use a recently developed minimum en-
tropy method to bring outside information to bear on inflation forecasts. We
compare our predictive densities with the Bank of England’s fan charts.

1 Introduction

The inflation-targeting regime that has prevailed in U.K. since 1992 has caused
policy makers to anticipate inflation. At regular meetings with its forecast team,
the Bank of England’s Monetary Policy Committee (MPC) discusses prospects for
∗We are grateful to the staff at the Bank of England for their advice and assistance and to

Sylvia Kaufmann and Kenneth West for their comments at the CFS-Bundesbank Conference on
“Expectations, Learning, and Monetary Policy,” held in Eltville, Germany.on August 30-31, 2003.
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inflation. After the meetings, the forecast team transforms the MPC’s discussion
into a projected distribution for future inflation in the absence of a policy change.
The MPC and its forecast team devote substantial time and effort to preparing fan
charts that express the Bank’s subjective assessment of medium-term inflationary
pressures in terms of a subjective measure of uncertainty. The fan charts reveal the
MPC’s subjective probability distribution for inflation, assuming that the Bank’s
policy instrument, a short-term nominal interest rate, is held constant. The MPC
uses the fan chart to guide and justify its decisions to adjust the short term nominal
interest rate to propel inflation toward the target.
The MPC intends the fan charts to describe several sources of uncertainty, in-

cluding model uncertainty, that qualify its forecasts of GDP growth and inflation.
Indeed, the Bank assesses risks by using multiple models and listening to a variety
of views. The MPC begins by identifying important shocks that might affect the
inflation forecast. For each perceived shock, the MPC forms a view of its size and
consequences and considers how that view might be wrong. It then calibrates the
degree of uncertainty and the balance of risks by examining alternative models to
assess what the consequences might be if the central view is mistaken. Eventually,
the MPC makes a judgment about whether the risks are skewed and by how much,
and whether uncertainty is more or less than in the past.
This paper proposes another way to prepare fan charts. By applying modern

Bayesian methods to a vector autoregression with a stochastic time-varying error
structure, we construct and estimate a flexible statistical model that acknowledges
diverse sources of uncertainty that include a form of model uncertainty. We construct
fan charts and other policy informative statistics for U.K. macroeconomic data, and
we compare our fan charts with those of the MPC.
Our objective is to articulate a formal and explicit probabilistic method for con-

structing fan charts. Our first step is to construct a posterior predictive density for a
Bayesian vector autoregression like the one developed by Cogley and Sargent (2002).
We can view the predictive density for inflation from our Bayesian VAR either as an
end in itself or as an ‘agnostic’ benchmark density that is to be ‘twisted’ by bringing
to bear additional sources of information and judgments. We apply a method devel-
oped by Robertson, Tallman, and Whiteman (2002) that transforms one predictive
density into another by constraining the twisted density to satisfy some constraints
that contain the outside information. This way of incorporating outside information
complements our BVAR fan chart in a way that seems to us to be congenial to Central
Bank policy procedures.
Our proposal has several merits relative to others currently in use for constructing

fan charts. For one, our Bayesian VAR has adaptive elements that make it attractive
for forecasting in an evolving monetary system such as that of the U.K. Within the
last four decades, there was the BrettonWoods system, then the breakdown and float,
various incarnations of fixed exchange rate rules, the decision to opt out of the fixed
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rate system after the currency crisis of 1992, and the adoption of inflation targeting,
and finally the Treasury’s gift of independence to the Bank. Who knows what the
future will bring after an eventual referendum on joining the European Monetary
Union? Each such transition must have witnessed a period of adaptation in which
the Bank learned how inflation was likely to behave in the new regime. Our Bayesian
VAR allows for drift in conditional mean and conditional variance parameters and
lets the predictive density adapt to a changing environment.
Our proposals also explicitly acknowledge more sources of forecast uncertainty

than do other procedures currently in use. Our model has three sources of uncertainty.
As in conventional models, there are shocks to the VAR that will occur in the future,
as well as uncertainty about parameters describing the state of the economy at the
forecast date. An additional source of uncertainty enters because some of the model’s
parameters will in the future drift away from their current values. This feature is
important for representing uncertainty about how closely the future may resemble
the present.1 Some methods for constructing fan charts focus exclusively on VAR
innovations, while others combine them with static parameter uncertainty, but most
abstract from parameter drift. One contribution of this paper is to show how to
construct Bayesian prediction intervals when the monetary system is evolving. We
quantify the importance of this source of forecast uncertainty and compare it with
the others.
We construct fan charts for U.K. inflation conditioned on data through 2002.Q4.

We show the BVAR predictive density and decompose the various sources of uncer-
tainty that contribute to it. We also illustrate how outside information alters the
BVAR predictive density, and we compare our predictive densities with the Bank of
England fan chart for that quarter.

2 Posterior Predictive Densities

We begin by setting down some notation. Let yt represent a vector of observed
time series at date t, and let its history be represented by

Y T = [y01, ..., y
0
T ]
0. (1)

We want to make predictions F periods into the future. This involves characterizing
probabilities associated with potential future paths, which are denoted

Y T+1,T+F = [y0T+1, ..., y
0
T+F ]

0. (2)
1Examples that motive the relevance of this feature include whether or when the U.K. will join

the EMU, whether there is a new economy in the U.S., or how the Federal Reserve will behave after
Chairman Greenspan’s retirement.
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The model depends on two sets of parameters, some that drift over time and oth-
ers that are static. The drifting parameters are denoted Θt, and their history and
potential future paths are represented by

ΘT = [Θ0
1
, ...,Θ0

T ]
0, (3)

ΘT+1,T+F = [Θ0
T+1, ...,Θ

0
T+F ]

0,

respectively. Static parameters are denoted ψ.
The paper shows how to simulate two posterior densities, one corresponding to

model-based forecasts from a Bayesian vector autoregression and another that trans-
forms the first to reflect information from outside the model. The first subsection
defines the BVAR predictive density, and the second reviews the method of Robert-
son, et. al. for including additional information.

2.1 The BVAR Predictive Density

BVAR fan charts are constructed from the posterior predictive density, which is
the joint probability density over future paths of the data, conditioned on priors and
the history of observables. This density can be expressed as

p(Y T+1,T+F |Y T ) =
ZZ

p(Y T+1,T+F ,ΘT+F ,ψ|Y T )dΘT+Fdψ, (4)

where p(Y T+1,T+F ,ΘT+F ,ψ|Y T ) is the joint posterior density for VAR parameters
and future observables.
To interpret this expression, it is convenient to factor the integrand as

p(Y T+1,T+F ,ΘT+F ,ψ|Y T ) = p(Y T+1,T+F |ΘT+F ,ψ, Y T ) (5)

× p(ΘT ,ψ|Y T )
× p(ΘT+1,T+F |ΘT ,ψ, Y T ).

Each of the factors on the right hand side accounts for one of the sources of uncertainty
listed in the introduction. The first term, p(Y T+1,T+F |ΘT+F ,ψ, Y T ), represents the
posterior density for future observables, treating model parameters as if they were
known with certainty. This term reflects the influence of future shocks to the VAR.
The second and third terms in (5) account for parameter uncertainty. The second

term, p(ΘT ,ψ|Y T ), measures parameter uncertainty within the sample. This is the
joint posterior density for VAR parameters given priors and data through date T .
Among other things, this includes uncertainty about ΘT , the terminal value of the
drifting parameters, as well as uncertainty about the static hyperparameters that
govern the rate at which Θt drifts.
The third term, p(ΘT+1,T+F |ΘT ,ψ, Y T ), reflects how future parameters may drift

away from ΘT as the economy continues to evolve. Incorporating this last source of
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uncertainty is a novel feature of our proposal. How much this matters for the short-
and medium-horizon forecasts in which the Bank is interested is a question that we
address below.

2.2 Exploiting Outside Information to Sharpen BVAR Fore-
casts

Although a BVAR fan chart might be useful as a benchmark or starting point for
policy discussions, it is unlikely to be adequate by itself. The BVAR is designed for
flexibility, to fit complex patterns in the historical data and to adapt well to changing
circumstances. Such a model is unlikely to be a good forecasting tool because it is
too heavily parameterized. Additional information of some sort, whether from priors,
observations of other variables, or forecasts from other models, is needed to augment
the benchmark model. This can be brought in at a second stage using the relative
entropy method of Robertson, Tallman, and Whiteman (2002).2

The basic idea is to take a random sample from the BVAR predictive density3

and to transform it into a random sample from another predictive density, say
p∗(Y T+1,T+F |Y T ), that embodies the outside information. Robertson, et. al. as-
sume that the new information can be expressed as a vector of moment conditions,

E g(Y T+1,T+F ) = ḡ, (6)

where the expectation is taken with respect to p∗(·). If it happens thatZ
g(Y T+1,T+F )p(Y T+1,T+F |Y T )dY T+1,T+F = ḡ, (7)

then the BVAR predictive density is fully consistent with the outside information,
and no transformation is needed. But this rarely occurs. The BVAR probability
weights usually have to be altered to satisfy (6). Since this involves a ‘distortion’ of
the original density, we want to alter the weights in a minimal fashion. That is, the
new density should be as close as possible to the original.
Robertson, et. al. use the Kullback-Leibler information criterion (KLIC) to mea-

sure how close the two densities are. The KLIC is defined as

K(p, p∗) =

Z
log

∙
p∗(Y T+1,T+F |Y T )
p(Y T+1,T+F |Y T )

¸
p∗(Y T+1,T+F |Y T )dY T+1,T+F . (8)

New probability weights are chosen by minimizing K(p, p∗) subject to constraints
that (6) is satisfied and that the weights are probabilities. Their procedure works as
follows.

2They credit Stutzer (1996) and Kitamura and Stutzer (1997) for their inspiration.
3Any predictive density will do, but we use the BVAR density as a starting point.
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Let (Y T+1,T+Fi ,πi) represent a draw from the BVAR predictive density, where πi
is a probability weight from p(·). Our algorithm produces an evenly weighted sample,
so πi = 1/N , but this need not be the case. We want to calculate a new weight π∗i so
that the re-weighted sample satisfies the Monte Carlo approximation to (6),XN

i=1
π∗i g(Y

T+1,T+F
i ) = ḡ. (9)

Since the new weights are probabilities, they must also satisfy

π∗i ≥ 0,
XN

i=1
π∗i = 1. (10)

Finally, since we want p∗(·) to be as close as possible to p(·), π∗i is chosen to minimize
the Monte Carlo approximation to K(p, p∗),XN

i=1
π∗i log

µ
π∗i
πi

¶
. (11)

The solution sets

π∗i =
πi exp

h
γ0g(Y T+1,T+Fi )

i
PN

i=1 πi exp
h
γ0g(Y T+1,T+Fi )

i , (12)

where γ is a vector of the Lagrange multipliers associated with (6). The multipliers
can be found by solving a minimization problem,

min
γ

XN

i=1
πi exp

n
γ0
h
g(Y T+1,T+Fi )− ḡ

io
. (13)

Armed with the new weights π∗i , one can use importance sampling techniques to
resample from the original BVAR distribution. This just involves sampling Y T+1,T+Fi

with weight π∗i instead of weight πi = 1/N. This can be done via the multinomial
resampling algorithm of Gordon, Salmond, and Smith (1993), which we describe in
an appendix.4

One reason why our Bayesian VAR is useful for producing benchmark forecasts is
that it encompasses more sources of uncertainty than many other models. This means
its tails are likely to be heavier than those of a ‘better informed’ proposal density.
Heavy tails are attractive for a proposal density because they ensure that the tails of
p∗(·) are well represented in the sample from p(·). This enhances the efficiency and
numerical accuracy of importance sampling (Geweke 1989).5

4Their resampling scheme is a component of a more complex particle filter. Our problem involves
only the ‘selection’ step of their algorithm.

5A number of participants at the conference remarked that the tails of p(·) might be too fat.
Sylvia Kaufmann, on the other hand, warned that they might be too thin, at least in one direction.
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An interesting by-product of these calculations are measures of how much the
original density is altered. Notice that K(p, p∗) is zero if p∗(·) and p(·) coincide.
Therefore, small values of the empirical KLIC signify agreement between the BVAR
and outside information, while large values signify disagreement. In the latter case,
the Lagrange multipliers γ are useful for diagnosing which elements of g(·) are most
responsible for the discrepancy.
Another symptom of disagreement is a highly uneven distribution of the new

weights, π∗i , so that the new sample is dominated by only a few points from the old
sample. In effect, this means that (6) is selecting a few of the many possible sample
paths from p(·) while ignoring the others. This can be diagnosed by plotting the
histogram of the importance ratio, π∗i /πi, or by calculating the mean sum of squares
of them largest weights relative to the mean sum of squares of all the weights (Geweke
1989). These statistics are illustrated below in the empirical application.
The diagnostics measure how informative (6) is, and they are likely to be useful as

warnings in the policy process. Outside information must alter p(·) in order to sharpen
BVAR forecasts, but policy analysts should think twice when large discrepancies
between p(·) and p∗(·) occur. If satisfaction of (6) requires severe twisting of p(·), then
it would be prudent to review the arguments supporting (6) and to consider whether
elements of (6) should be modified or relaxed. Large discrepancies are not necessarily
problematic; they may result from unusually incisive judgment about the economy.
But when large discrepancies occur, one should have a good story supporting the
external constraints. Judgment along these lines is an essential part of the craft of
central banking. Measures of the tension between p(·) and p∗(·) are intended to help
inform these judgments.

3 The Benchmark VAR

Now we turn to the benchmark VAR. Our first-stage forecasts are generated from
a Bayesian vector autoregression with drifting conditional mean parameters and a
complex error structure. We study data on RPIX inflation, an output gap, and the
nominal three-month Treasury bill rate. The data are sampled quarterly, and they
span the period 1957.Q1 to 2002.Q4.
A preliminary measure of the output gap is constructed by exponentially smooth-

ing data on real GDP. The ‘trend’ in GDP is computed recursively, by iterating on

τt = τt−1 + g(xt − τt−1), (14)

She points out that our model builds in a lot of symmetry because of assumptions of conditional
normality. The Bank, on the other hand, emphasizes skewness arising from asymmetric risks. If
p∗(·) is skewed and p(·) is symmetric, then one of the tails of p(·) might be too thin unless it is
very over-dispersed relative to p∗(·). This is a legitimate concern. In practice, however, it can be
diagnosed from the distribution of relative entropy weights, which would have a long right tail in
this case because draws from the thin tail of p(·) would need to be copied many times to cover p∗(·).
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where xt represents the log of real GDP and the gain parameter g = 0.075. Then
the output gap is calculated by subtracting this estimate from GDP, xt − τt. This
is a crude way to construct an output gap, but two remarks can be offered in its
defense. One is that τt is measured from a one-sided low-pass filter that preserves the
information flow in the data. In contrast, two-sided filters look into the future when
estimating τt. The other is that this is only a preliminary estimate. The time-varying
VAR will itself imply adjustments to the level of τt.6 A rough preliminary measure is
all we need to get started.
We estimate a second-order vector autoregression,

yt = X
0
tθt + ²t, (15)

where yt is a vector of observed endogenous variables, the matrixXt includes constants
plus two lags of yt, and ²t = R

1/2
t ξt is a vector of measurement innovations. The

normalized innovations ξt are assumed to be standard normal, and Rt is a stochastic
volatility matrix that is be described below. The variables are ordered so that the
nominal interest rate is the first element in yt, the output gap is second, and the
inflation rate is third.
The VAR parameters, θt, are themselves a stochastic process, assumed to follow

a driftless random walk with a reflective barrier that keeps them from entering re-
gions of the parameter space where the VAR is explosive. The driftless random walk
component is represented by a joint prior,

f(θT , Q) = f(θT |Q)f(Q) = f(Q)
YT−1

s=0
f(θs+1|θs, Q). (16)

where
f(θt+1|θt, Q) ∼ N (θt, Q). (17)

This unrestricted transition equation makes θt+1 conditionally normal with an incre-
ment vt = θt − θt−1 that has mean zero and constant covariance Q. Associated with
this is a marginal prior f(Q) that makes Q an inverse-Wishart variate.
The reflecting barrier is encoded in an indicator function,

I(θT ) =
YT

s=1
I(θs). (18)

The function I(θs) = 0 when the roots of associated VAR lag polynomial lie inside
the unit circle, and I(θs) = 1 otherwise. This is a stability condition for the VAR,
reflecting an a priori belief about the implausibility of explosive representations for
the variables in which we are interested. Whether it is plausible for other variables
or other economies is a matter of judgment.

6The VAR allows a non-zero mean in the gap, and this varies over time. At the end of the day,
one can calculate an adjusted gap as xt − τt − γt, where γt is the posterior estimate of the mean
gap. The adjusted trend is therefore τt + γt.
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The reflecting barrier truncates and renormalizes the random walk prior, so that
the joint prior for θT and Q becomes

p(θT , Q) ∝ I(θT )f(θT , Q). (19)

From this, one can derive that the conditional prior for θT |Q is

p(θT |Q) = I(θT )f(θT |Q)
mθ(Q)

. (20)

The normalizing constant mθ(Q) =
R
I(θT )f(θT |Q)dθT is the prior probability of a

non-explosive sample path for θT , conditional on a particular value of Q. Thus, the
stability condition truncates and renormalizes f(θT |Q) to eliminate explosive θ’s.
Similarly, the marginal prior for Q becomes

p(Q) =
mθ(Q)f(Q)

mQ
, (21)

where mQ =
R
mθ(Q)dQ is the unconditional prior probability of a non-explosive

trajectory for θT . Here the marginal prior f(Q) is transformed so that values of Q
which are more likely to generate explosive θ’s are penalized. This shifts the prior for
Q toward values implying less time variation in θ.
The reflecting barrier also alters the one-step transition density, which becomes

p(θt+1|θt, Q) ∝ I(θt+1)f(θt+1|θt, Q)φ(θt+1, Q). (22)

The term φ(θt+1, Q) =
R
I(θt+2,T )f(θt+2,T |θt+1, Q)dθt+2,T represents the probability

that random-walk paths emanating from θt+1 will remain in the nonexplosive region
going forward in time. This transformation censors explosive draws fromf(θt+1|θt, Q)
and down-weights those likely to become explosive.
In addition to drifting conditional mean parameters, the model also has drift-

ing conditional variances. The VAR innovations ²t are assumed to be conditionally
normal with mean zero and covariance Rt. To model drifting variances, we adapt a
formulation from the literature on multivariate stochastic volatility models,7 specify-
ing that

Rt = B
−1HtB

−10. (23)

The matrix Ht is assumed to be diagonal,

Ht =

⎛⎝h1t 0 0
0 h2t 0
0 0 h3t

⎞⎠ , (24)

7For example, see Aguilar and West (2000), Jacquier, Polson, and Rossi (1999), and Pitt and
Shephard (1999).
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with univariate stochastic volatilities along the main diagonal. We further assume
that the volatilities evolve as driftless, geometric random walks,

lnhit = lnhit−1 + σiηit. (25)

The volatility innovations ηit are mutually independent, standard normal variates.
The variance of ∆ lnhit depends on the associated free parameter σ2i .
The matrix B is lower triangular with 1’s along the main diagonal,

B =

⎛⎝ 1 0 0
b21 1 0
b31 b32 1

⎞⎠ . (26)

The free elements in B, which we collect into a vector β, allow for correlation in the
measurement innovations. The VAR innovations can thus be orthogonalized,

B²t = εt (27)

so that εt has variance Ht. While this is just a rotation, not an identification, speci-
fication (23) implies that y1t has only one source of volatility, that y2t adds another
source, and so on. Thus, the i-th column of Rt consists of a linear combination of
h1t, . . . , hit. In principle, this means that the ordering of variables can matter for
estimates of the VAR innovation variance.8

Finally, for tractability and parsimony, we assume that the random-walk parame-
ter increments vt are uncorrelated at all leads and lags with the standardized VAR
innovations ξt,

E(ξtv
0
s) = 0, for all t and s. (28)

We also assume that both vt and ξt are independent of the volatility innovations, ηt.
To calibrate our priors, we assume that the hyperparameters and initial value of

the drifting parameters are independent across blocks, so that the joint prior factors
into a product of marginal priors,

f (θ0,H0, Q,β,σ) = f(θ0)f(H0)f(Q)f(β)f(σ). (29)

Each of the terms in (29) is selected from a family of natural conjugate priors, and
each of the marginal priors is specified so that it is proper yet weakly informative.
The unrestricted prior for the initial state is Gaussian,

f(θ0) ∝ N (θ̄, P̄ ). (30)

To calibrate (30), we estimate a time-invariant VAR using a training sample covering
the period 1957.Q1 to 1961.Q4. The parameters θ̄ and P̄ were set equal to the result-
ing point estimate and asymptotic covariance, respectively. Because the preliminary

8Cogley and Sargent (2002) reported that the ordering mattered little in U.S. data, but we have
not yet checked this for U.K. data.
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sample is so short, this is weakly informative for θ0. The prior mean is just a ballpark
number, and the prior variance allows a substantial range of outcomes.
Our prior for Q is inverse-Wishart,

f(Q) = IW(Q̄−1, T0), (31)

with scale matrix Q̄ and degree-of-freedom parameter T0. Because Q is a key parame-
ter governing the rate of drift in θ, we want to maximize the weight that the posterior
puts on sample information. The parameter T0 must exceed the dimension of θt in
order for f(Q) to be proper, and we set T0 to the minimal value,

T0 = dim(θt) + 1. (32)

To set the scale matrix Q̄, we assume

Q̄ = γ2P̄ , (33)

and we calibrate γ so that Q̄ is comparable to the value used by Cogley and Sargent
(2002). This results in a conservative setting for Q̄, as it involves only a minor
perturbation from time-invariance.
Priors for the stochastic volatility parameters are also calibrated to put consider-

able weight on sample information. The prior for hi0 is log-normal,

f (lnhi0) = N (lnRii0 , 10), (34)

where lnRii0 is the estimate of the log of residual variance of variable i from the
preliminary sample. A variance of 10 is huge on a log scale and allows a wide range
of values for hi0. As is the case of θ0, the prior mean for H0 is no more than a ballpark
number surrounded by considerable uncertainty.
Similarly, the prior for β is normal with mean zero and a large variance,

f (β) = N (0, 10000 · I). (35)

Lastly, the prior for σ2i , the variance of the stochastic volatility innovations, is inverse-
gamma

f(σ2i ) = IG(δ/2, 1/2), (36)

with scale parameter δ = 0.0001 and degree-of-freedom parameter equal to 1. This
distribution is also proper yet extremely diffuse.
In the end, our f -prior is weakly informative with its influence being strongly

diluted as time goes forward. The p-prior is more informative, as the truncation
concentrates the posterior in the stable part of the parameter space.
In terms of the notation of the previous section, we have

ΘT = (θT ,HT ), (37)

ψ = (Q,σ, β).
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Our goal is to simulate the BVAR predictive density, p(Y T+1,T+F |Y T ). This is ac-
complished by sampling in parts, using equation (5) as a guide. Each of the steps is
detailed in the appendix.9

Briefly, our simulator works as follows. The first step involves sampling from
p(ΘT ,ψ|Y T ), the second term in (5). This is done via the Markov Chain Monte
Carlo algorithm of Cogley and Sargent (2002), which is described in appendix A.1.
We simulated a Markov chain of length 100,000 and discarded the first 50,000 to
ensure convergence to the ergodic distribution. Convergence was checked by inspect-
ing recursive mean plots and comparing results across parallel chains starting from
different initial conditions. We found that convergence is rapid and reliable and that
the effects of the initial draw dissipated quickly. To economize on storage and to
reduce serial correlation in the chain, we saved every 10th draw. Doing so increases
the variance of ensemble averages from the simulation, yet it yields a sufficient sample
of 5000 draws from p(ΘT ,ψ|Y T ).
The next step involves simulating a future path for the drifting parameters,

ΘT+1,T+F , conditional on a realization of (ΘT ,ψ) from step 1. This involves a slight
extension of one of the elements of Cogley and Sargent (2001) to handle the stochastic
volatilities, a feature absent from that paper, and it is described in appendix A.2. The
forecast horizon F was set 20 quarters ahead,10 and we executed 5000 replications.
This delivers a sample from p(ΘT+1,T+F |ΘT ,ψ, Y T ), the third term in (5).
The third step is to sample a path for future observables, Y T+1,T+F , given a

realization from the first two steps. This is just a simulation of a VAR with known
coefficients, and it is described in appendix A.3. Again we executed 5000 replications,
obtaining a sample from p(Y T+1,T+F |ΘT+F ,ψ, Y T ), the first term in (5).
Taken together, these three simulations deliver a random sample from the joint

density, p(Y T+1,T+F ,ΘT+F ,ψ|Y T ). We marginalize as in equation (4) by discarding
the draws for ΘT+F and ψ, thus eliminating nuisance parameters. The result is an
evenly weighted random sample from the BVAR predictive density, p(Y T+1,T+F |Y T ).
BVAR fan charts are constructed by reading from the percentiles of this Monte Carlo
distribution.

4 Features of p(ΘT ,ψ|Y T )
This section briefly reviews some features of the retrospective posterior, p(ΘT ,ψ|Y T ).

We focus on elements that are relevant for the construction of fan charts. A more
9It is worth emphasizing that although the algorithms are tedious, they are not hard. The

programs are also modular, which we hope will facilitate modifications, extensions, and other ap-
plications. Indeed, Primiceri (2003) and Del Negro (2003) have already introduced important im-
provements and extensions to our model and methods.
10The Bank of England fan charts run 9 quarters ahead, but we were curious about longer horizons

as well.
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thorough and detailed exploration can be found in Morozov (2004). Benati (2002,
2003) estimates closely related models and studies the evolution of key variables over
a much longer span of time.

4.1 Core Inflation

The first figure depicts how long-horizon forecasts of inflation have varied over the
last four decades. They are estimated from local linear approximations to mean infla-
tion evaluated at the posterior mean, E(θt|T ). One can express the VAR in companion
form as

zt = µt|T +At|Tzt−1 + ut, (38)

where zt consists of current and lagged values of yt, µt|T contains the intercepts in
E(θt|T ), and At|T contains the autoregressive parameters. Then mean inflation at
date t can be approximated by

π̄t = sπ(I −At|T )−1µt|T , (39)

where sπ is a row vector that selects inflation from zt. This is an approximation to the
Beveridge-Nelson (1981) trend in inflation. Because movements in π̄t are expected to
persist, we label it ‘core’ inflation.
Estimates of π̄t are shown in figure 1. Core inflation swept up from approximately

3 percent in the early 1960s to around 13 percent by the mid 1970s. It remained
in double digits until 1979, but declined sharply in the first half of the 1980s. It
fluctuated around 3.75 and 5.5 percent from 1983 to 1992, and then fell to around 2.5
percent after the adoption of inflation targeting in 1992. Since 1997, core inflation
has again begun to drift downward, falling to approximately 2.2 percent by 2002.Q4.
Thus, our estimate of core inflation is now a bit below to 2.5 percent, the center of
the Bank’s official targeting range.
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Figure 1: Long-Horizon Forecasts of Inflation
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A substantial amount of uncertainty surrounds the estimate in any given year, but
the figure describes the general historical pattern of inflation. For prediction, what
matters most is uncertainty at the end of the sample. This is illustrated in figure 2,
which portrays the marginal distribution of posterior estimates of core inflation as
defined by (39) as of 2002.Q4. A histogram for π̄T was constructed by calculating a
value for every draw of θT in the posterior simulation.
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Figure 2: Marginal Distribution for Core Inflation in 2002.Q4

The mean and median of this sample are 2.18 and 2.17 percent respectively. Thus,
the posterior distribution is approximately symmetric and centered roughly 30 basis
points below the Bank’s target. The posterior is also somewhat diffuse, but most of
the mass —more than 90 percent— lies between 1.5 and 3 percent. The median absolute
devation11 is 22 basis points, and the interquartile range is 1.94 to 2.38 percent. The
probability that π̄T is greater than 3.5 percent is 0.014, and there is also a 0.44 percent
chance that π̄T is less than zero.
That core inflation is now below 2.5 percent, the center of the official targeting

range, may reflect that policy makers have an asymmetric loss function. If the Bank
of England behaved minimizing a discounted quadratic loss function, it would choose
a policy rule that sets core inflation equal to the center of the targeting range. If its
loss function penalized positive deviations more than negative ones, then it would be
optimal for the Bank to choose a policy rule that is biased downward, i.e. one that
resulted drove core inflation below 2.5 percent.
From a forecasting perspective, however, this matters because core inflation iden-

tifies the limit point to which long-horizon BVAR forecasts converge. As we shall see
below, setting the end point equal to the target rather than the core would twist the
forecast distribution in a meaningful way. The difference between core and target
inflation will manifest itself as a tension between p(·) and p∗(·) in the relative entropy
calculations below.
11There are outliers in the sample, which are collected in the end bins.
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For constructing fan charts, it is important that the proposal density p(·) recognize
movements in π̄T . Core inflation determines the end point to which long-horizon
BVAR forecasts converge. If movements in this variable were suppressed, the end
point for inflation forecasts would reflect an average of the values seen in the historical
sample, which may or may not still be relevant for prediction. For example, suppose
the proposal density were based on a constant-coefficient model estimated using a
30 year window of data. The end point for inflation forecasts would depend on the
estimated mean from this model, which would reflect an average of the high values
of the 1970s with lower values from the 1980s and 1990s. One could argue that the
adoption of inflation targeting in 1992 made the high values of the 1970s obsolete. If
so, the model’s end point would be too high, and inflation forecasts would persistently
revert to a sample average that is no longer relevant. A moving window would
eventually drop those observations, but this would take time. A random coefficients
model like ours adapts more quickly.12

4.2 Inflation Persistence

Next we turn to evidence on changes in the degree of inflation persistence. As in
our earlier work, inflation persistence is measured by the normalized power spectrum,

gππ(ω, t) =
2πfππ(ω, t)R π

−π fππ(ω, t)dω
, (40)

where fππ(ω, t) is the instantaneous power spectrum,

fππ(ω, t) = sπ(I −At|Te−iω)−1
E(Rt|T )

2π
(I −At|Teiω)−10sπ 0. (41)

The latter is constructed from the posterior mean of the companion matrix, At|T ,
and the innovation variance, Rt|T . The normalization in (40) adjusts the spectrum
by dividing by the variance in each year, so that gππ(ω, t) measures autocorrelation
rather than autocovariance. We also multiply by 2π to convert to units that are
more easily interpretable. In these units, a white noise process has gππ(ω) = 1 at all
frequencies.13

The next two figures depict our estimates of gππ(ω, t). Time is plotted on the x-
axis, frequency on the y-axis, and power on the z-axis. The first shows how gππ(ω, t)
has evolved from year to year, and the second compares three estimates from the
beginning, middle, and end of the sample.

12See Kozicki and Tinsley (2001a,b) or Cogley (2002) for more discussion on the significance of
moving end points.
13This normalization differs from the one in Cogley and Sargent (2002). There a white noise

process has a flat spectrum at a level 1/2π.
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Figure 3: Normalized Spectrum for Inflation
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Figure 4: Normalized Spectrum in Selected Years

In the early 1960s, the spectrum for inflation was flat, reflecting that inflation
was approximately white noise at that time. By the mid-1970s, however, the spec-
tral shape was very different. There was much more low-frequency power, and a
pronounced spectral peak had developed at roughly 8 years per cycle. This pat-
tern reflects positive autocorrelation at short horizons and negative autocorrelation
over longer ones. In other words, the monetary policy rules in force were permitting
substantial variation in inflation to go unchecked for years at a time, and only very
gradually bringing πt back toward π̄t. Thus, not only did core inflation rise during
this period, but also deviations from core inflation became more persistent.
This process was reversed after 1980 and especially after 1992. By the end of the

sample, the spectrum for inflation had a peak at high frequencies and a trough at
low frequencies. This is characteristic of a series that is negatively autocorrelated at
short horizons, and it implies partial mean reversion in the price level. This is a sign
that monetary policy quickly offsets shocks to inflation, and indeed overshoots its
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target on the way back. Thus, the policy rules adopted after 1980 have significantly
reduced not only the average level of inflation but also its persistence. Shocks to U.K.
inflation once persisted for years, but now they are quickly extinguished.
Changes in the transitory dynamics of inflation are also material for constructing

fan charts because the shape of prediction intervals depends on the degree of persis-
tence. For example, a white noise process has rectangular prediction intervals with
a width proportional to the unconditional standard deviation. A stationary process
with positive autocorrelation has prediction intervals that eventually converge to this
width, but they are narrower at short horizons, and they fan out at a rate that de-
pends on the degree of persistence. The limit is reached more quickly for a weakly
autocorrelated process and more slowly for one that is strongly dependent. For a
random walk process, the forecast error variance increases without bound, and fan
charts grow ever wider as the forecast horizon increases.
For the same reason that it is important for the proposal density to recognize

movements in core inflation, it is also important that it discern changes in inflation
persistence. Otherwise, the half life of shocks would be overestimated, and fan charts
would have the wrong shape. A constant-coefficient model for U.K. inflation would
overstate inflation persistence for two reasons. One is that it would disregard move-
ments in core inflation and measure persistence in terms of reversion toward a full-
sample average rather than toward a more appropriate local average. The half-life of
the former is greater than that of the latter. A constant-coefficient model would also
average high local-persistence observations of the 1970s with lower local-persistence
values from the 1990s, giving them equal weight. Since the high-persistence observa-
tions come from a different monetary regime, they are less relevant for forecasting and
should be given less weight relative to more recent observations. As a consequence of
both, prediction intervals constructed from a constant-coefficients model would have
the wrong shape, fanning out too slowly from the terminal observation.

4.3 Innovation Variances

Another feature that is important for constructing prediction intervals is the size
of future shocks. The following two graphs report on this feature of the data. Figure
5 illustrates the evolution of the posterior mean of the VAR innovation variance Rt|T .
Standard deviations, expressed as basis points at annual rates, are shown in the left-
hand column, and correlations are shown in the right. Figure 6 portrays the total
prediction variance, log |Rt|T |, a measure of the total variance hitting the system at
each date.
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Figure 5: VAR Innovation Variance
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Figure 6: Total Prediction Variance

The innovation variance for all three variables has fallen considerably — by 75 or
80 percent — since the 1970s. Although the timing of the stabilization differs across
variables in figure 5, figure 6 furnishes evidence of a prolonged decline in the total
prediction variance between 1979 and 1994, with a partial reversal thereafter.
The right-hand column of figure 5 suggests there are relatively weak contempo-

raneous correlations among the variables. There is an inverse correlation between
inflation and GDP residuals, though it is small in magnitude. Innovations in nominal
interest rates are positively correlated with those in inflation and output, suggesting
feedback from current quarter news about inflation and GDP to nominal interest
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rates. This is a sign of ‘reverse causality,’ that the Bank is raising the short rate in
response to reports of higher inflation or output.
Within the fan chart community, there is some resistance to using historical predic-

tion errors to measure innovation variances. To some extent, this reflects an attitude
that such measures overstate the amount of short-term uncertainty that central banks
currently face. A proposal density based on constant historical innovation variances
would certainly be subject to this criticism. Such a model would average high vari-
ances from the volatile 1970s with lower values from the stable 1990s, thus overstating
the likely magnitude of future shocks. Once again, an adaptive BVAR helps address
this problem by allowing parameters to drift.
Resistance to using historical prediction errors to calibrate innovation variances

also reflects central banks’ knowing that they have an information advantage relative
to a simple vector autoregression such as ours. Otherwise the bank could not react
within quarter to news about inflation or unemployment. This information advantage
should reduce conditional variances relative to those we have estimated. However, the
extent to which the conditional variance for multi-step forecasts falls depends on the
degree of persistence, which we estimate to be rather weak at the end of the sample.

5 Inflation Fan Charts

This section illustrates and compares a number of fan charts for inflation. All
are conditioned on observations on inflation, the output gap, and nominal interest
through the fourth quarter of 2002. They differ in terms of assumptions about sources
of uncertainty within the BVAR and constraints on forecast paths arising outside the
model. The first subsection illustrates the BVAR predictive density, p(·), and studies
the importance of parameter uncertainty and drift. The second compares p(·) with
the Bank of England’s predictive density and shows how p(·) is altered by imposing
elements of the Bank’s forecast.

5.1 BVAR Prediction Intervals and Sources of Uncertainty

Figure 7 portrays the BVAR fan chart for inflation. The sample ends in 2002.Q4,
and the one-step ahead forecast is for 2003.Q1. We compare our calculations with
those reported for the same forecast dates in the February 2003 Inflation Report
published by the Bank of England.
The figure illustrates percentiles of the marginal density at each horizon. The

center line records the median forecast, the next two lines fanning out from the center
illustrate the interquartile range, and the outer two curves represent a centered 90
percent prediction interval. Joint densities for forecast paths can also be constructed
from our simulation output, but the Bank does not do this, and we follow their lead
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for the sake of comparison.14
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Figure 7: BVAR Fan Chart for Inflation

In this chart and the ones that follow, inflation is measured on a year-over-year
basis,

πat =
X3

j=0
πt−j. (42)

Accordingly, the prediction intervals are narrow at first, reflecting that realized in-
flation for the previous three quarters is known. As the forecast horizon lengthens,
the prediction intervals gradually fan out as forecasts replace lagged realizations in
calculating year-over-year inflation.
Two characteristics are significant. First, notice how quickly the BVAR forecast

reverts to core inflation. The median forecast is approximately 2.4 percent for the
first quarter of 2003, it increases to 2.5 percent in the second, and then falls back
to around 2.2 percent in the third and fourth quarters. Thus, there is a transient
increase in inflation which is expected to expire within a year. This quick reversion to
the mean reflects the weak persistence that we estimate near the end of the sample.
Second, at the one-year horizon and beyond, when lagged realizations no longer

matter, the fan chart becomes rather wide. At the one-year horizon, there is a fifty
percent chance that inflation will lie somewhere between 1.75 and 2.5 percent, and a
10 percent chance that it will be lower than 1.3 percent or higher than 2.9 percent. At
the 2-year horizon, the edges of the 90 percent prediction interval move out slightly
to 1.25 and 3 percent, respectively. Thereafter, the fan chart continues to spread
out, reflecting the influence of future parameter drift. The prediction intervals would
not spread out as quickly if the current policy regime were sure to remain in force
indefinitely.
To quantify the sources of uncertainty about future inflation, we conduct two al-

ternative simulations that shut down particular features of the model. First, to isolate
14The Bank’s methods do not allow for the construction of joint densities across forecast paths.
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the contribution of future shocks to the VAR, we construct a fan chart that abstracts
from uncertainty about the terminal estimate of the VAR parameters, (ΘT ,ψ), as
well as from future parameter drift. These sources are deactivated by setting (ΘT ,ψ)
equal to their posterior mean and by constraining ΘT+i = ΘT , i = 1, ..., F . We em-
phasize that this exercise still permits parameter drift within the sample, but ignores
it when making out-of-sample forecasts.
The results are depicted in the next figure, which compares the median and in-

terquartile range for two predictive densities. The dashed lines are reproduced from
figure 7, and they represent results for the unrestricted BVAR. The solid lines illus-
trate how the predictive density is altered when parameter uncertainty and drift are
shut down.
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Figure 8: BVAR Fan Chart Abstracting from Parameter Uncertainty

With respect to median inflation forecasts, accounting for parameter uncertainty
matters, but only slightly. Median forecasts from the restricted simulation closely
track those from the full BVAR for the first year, and then they are persistently lower
by about 5 or 10 basis points at longer horizons. The lower edge of the interquartile
range also closely tracks that of the BVAR. The chief difference concerns the upper
tail, which is quite a bit shorter when parameter uncertainty and drift are deactivated.
This is especially relevant at horizons of a year or more.
One can further decompose the effects of parameter uncertainty into a part due

to uncertainty about end-of-sample estimates, (ΘT ,ψ), and a part due to future
parameter drift. In the next simulation, we incorporate end-of-sample parameter
uncertainty by taking draws of (ΘT ,ψ) from p(ΘT ,ψ|Y T ), but we again deactivate
future parameter drift by setting ΘT+i = ΘT , i = 1, ..., F . The results, which are
shown in figure 9, are qualitatively similar to those in figure 8, though smaller in
magnitude.
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Figure 9: BVAR Fan Chart Abstracting from Future Parameter Drift

Now the median forecast is virtually identical to that of the full BVAR. This
means that the discrepancy in figure 8 is due entirely to future parameter drift. Once
again, the upper tail of the forecast distribution is too short, but only by half as much
as before. For 5-year ahead forecasts, the 75th percentile is off by roughly 30 basis
points in figure 8, but only by 15 basis points in figure 9. Thus, the discrepancy in
the upper tail recorded in figure 8 is due in equal parts to a neglect for end-of-sample
parameter uncertainty and future parameter drift.
Disregarding parameter uncertainty and drift means taking for granted that the

current monetary regime will remain in force throughout the forecast period. This is
a fairly reasonable assumption for the purpose of making short-term forecasts over a
horizon of a year or less. But for an accurate account of long-run inflation uncertainty,
one must take seriously the possibility of a change in regime. Otherwise one is likely
to underestimate the risk of a recurrence of high inflation.

5.2 Relative Entropy Examples

We now provide a few simple examples to show how the BVAR fan chart is altered
when additional information is introduced.15 As a starting point, it is helpful to
compare the BVAR predictive density for inflation with that of the Bank of England
for the same period. The two are summarized in the following table. We focus on
forecast horizons of 1- and 2-years ahead, which correspond to the dates 2003.Q4 and
2004.Q4. The entries in the table refer to the probability that year-over-year inflation
lies in the interval shown at the top of each column. The other rows refer to outcomes
of relative entropy calculations, and they are discussed below.

15See Robertson, et. al. for a number of other, more ambitious examples involving U.S. data.
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Table 1: Predictive Distributions for Inflation
2003.Q4 < 1.5% 1.5-2.0% 2.0-2.5% 2.5-3.0% 3.0-3.5% > 3.5%

Bank of England < 0.05 0.06 0.23 0.36 0.25 0.09
BVAR 0.147 0.263 0.338 0.178 0.055 0.019
Target 0.113 0.240 0.351 0.194 0.069 0.034

MPC Mean 0.033 0.123 0.277 0.250 0.147 0.170
MPC Mean, Variance 0.003 0.050 0.261 0.372 0.230 0.085

2004.Q4
Bank of England 0.06 0.15 0.25 0.25 0.17 0.12

BVAR 0.152 0.228 0.331 0.189 0.070 0.031
Target 0.089 0.181 0.322 0.231 0.106 0.072

MPC Mean 0.073 0.158 0.278 0.237 0.132 0.123
MPC Mean, Variance 0.043 0.139 0.294 0.278 0.144 0.101

Note: Rows may not sum to one because of rounding errors.

The Bank’s numbers are reproduced from the February 2003 Inflation Report,
and they correspond to a scenario in which the overnight interest rate is expected to
remain constant at 3.75 percent. We emphasize that we are not trying to assess the
accuracy of the Bank’s approximation to the BVAR density or vice versa. The two
predictive densities are predicated on different information sets and subjective priors,
and therefore are distinct objects. We are just curious about how they differ. We
gradually put them on a more comparable footing below, when we carry out relative
entropy calculations.
There are two notable differences between the BVAR fan chart and the Bank’s

predictive density. One is that the Bank’s fan chart is shifted to the right relative to
that of the BVAR. For example, the Bank’s median forecast for 2003 and 2004 are 2.78
and 2.64 percent, respectively, while the BVAR median forecasts are approximately
2.15 and 2.2 percent. The second difference is that the BVAR puts more weight in the
tails. In particular, while the Bank forecasts only a 7 percent chance that inflation
will fall below 2 percent in 2003, the BVAR fan chart says that this will occur on
roughly 40 percent of the sample paths. The BVAR compensates by reducing the
probability mass in the 2.5 to 3.5 percent range. According to the Bank, there is a 61
percent chance that inflation will fall in this interval in 2003, while the BVAR puts
only a 23 percent probability on this outcome.
The point is not that one is necessarily superior to the other, but that they differ.

Presumably the differences reflect additional information that the Bank possesses.
Next, we gradually introduce elements of the Bank’s information via relative entropy
calculations to see how they alter the BVAR density. A central question concerns how
much twisting is required to reconcile the BVAR predictive density with the Bank’s
outlook. The spirit of the relative entropy calculations is to provide feedback on the
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Bank’s scenarios. The more twisting that is involved, the better the story one would
want to have.
A natural place to start is with target inflation. One piece of information the

Bank possesses which the BVAR does not is knowledge that the official target is 2.5
percent. Equality of the BVAR end point with the Bank’s target can be enforced
via a relative entropy transformation. To construct an altered fan chart that satisfies
this condition, we resample from the BVAR predictive distribution using probability
weights designed so that expected inflation equals 2.5 percent at horizons longer than
2 years. The next figure shows how this alters the BVAR fan chart.
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Figure 10: Relative Entropy Fan Chart for the Constraint On Target Inflation

Once again, results for the BVAR are reproduced as dashed lines, while solid
lines depict the modified predictive density. Because our estimate of core inflation is
below the Bank’s target, this constraint shifts the forecast upward at long horizons.
The new probability weights π∗i favor sample paths involving higher inflation and
downweight those with lower inflation, so the constraint also shifts the interquartile
range. But notice that this matters more at longer horizons. For horizons of a year
or less, the forecast distribution changes only slightly.16

This visual impression is reinforced by table 1, which compares the relative entropy
distribution with that of the BVAR and the Bank. The rows labelled ‘Target’17 record
a decrease in the probability of low inflation outcomes relative to the BVAR density
and an increase in the probability of high inflation outcomes. This shift is relatively
minor at the 1-year horizon, however, and more substantial for 2-year ahead forecasts.
At short horizons, the relative entropy density remains closer to that of the BVAR,
and it moves gradually toward that of the Bank as the forecast horizon lengthens.
Table 2 reports diagnostics that measure how much twisting is required to enforce

the constraint. The KLIC associated with the target constraint is not too far from
16It is not obvious that this should happen because the re-weighting applies to forecast trajectories,

not to individual forecast horizons.
17The other rows correspond to other constraints, and they are discussed below.
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zero, the maximum importance weight is relatively modest at 15.4, and the relative
importance of the largest 10 weights, ω10, is also modest at 63.6. For the sake of
comparison, Robertson, et. al. report statistics of 0.66, 119.5, and 443.29, respec-
tively, for an example based on constraints implied by a consumption-CAPM model.
Because the consumption-CAPM is known to fit data rather poorly, their example
may be taken as a gauge for a high degree of twisting. The imposition of target
inflation as the forecast end point is not in the same category.

Table 2: Twisting Diagnostics
KLIC max(π∗i /πi) ω10

Target 0.124 15.4 63.6
MPC Mean 0.502 47.3 220.9

MPC Mean, Variance 0.675 9.4 26.3

How should the Bank interpret feedback such as this? If the MPC weighs forecast
errors symmetrically and truly desires to set mean inflation at long horizons equal
to the target, then it is a bit puzzling that the BVAR estimate of core inflation is
smaller. On the other hand, the posterior for π̄T is diffuse, and the distance between
π̄T and the target is slightly more than 1 median absolute deviation, so the evidence
for undershooting is not overwhelming. Moreover, enforcing the target involves only
a modest degree of twisting. With a good reason to support the target constraint
and little opposition from the diagnostics, one could proceed confidently with this
alteration.
The next example modifies the BVAR predictive density in a more forceful way,

using more of the Bank’s information. The Bank constructs fan charts by reducing
all its information to 6 numbers, the mean, variance, and skewness for inflation at
horizons of 1 and 2 years. These numbers are then used to calibrate a two-piece normal
density for those horizons, and densities for other horizons are found by interpolation.
Here we borrow two of their numbers, the mean of inflation 4 and 8 quarters ahead,
and use them to form relative entropy constraints. The results are recorded in figures
11 and 12 and in the rows labelled ‘MPC Mean’ in tables 1 and 2.
The Bank’s mean forecast evinces more concern for high inflation than the BVAR

forecast. As noted above, the Bank’s mean inflation forecast is about 60 basis points
higher than the BVAR’s for 2003 and 45 basis points higher for 2004, so this constraint
lifts the BVAR forecast path andmoreover lifts it at shorter horizons than the previous
intervention. Indeed, over horizons of 2 years or less, the median of p∗(·) closely tracks
the 75th percentile of p(·). Notice also how much the interquartile range shifts. For
horizons out to 2.5 years, the 75th percentile of p∗(·) lies above the 90th percentile of
p(·), and the 25th percentile for p∗(·) is close to the median for p(·).
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Figure 11: Relative Entropy Fan Chart for Constraints Involving MPC Mean
Inflation

This constraint involves a more energetic twisting than the one involving target
inflation. As shown in table 2, the KLIC rises to 0.50, the maximum importance
weight is 47.3, and the ω10 becomes 220.9, values that approach those for the problem-
atic consumption-CAPM example of Robertson, et. al. Further evidence of aggressive
twisting is recorded in figure 12, which plots the histogram of importance weights,
π∗i /πi, for this example.
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Figure 12: Relative Entropy Weights for the MPC Mean Constraint

Two warning signs are evident in this figure, a long upper tail and a concentration
below 1/2. The long upper tail indicates that a few sample paths are being copied
many times in going from p(·) to p∗(·). For example, sample paths from p(·) that have
importance weights in the top ten percent of this distribution account for 37.7 percent
of the draws in p∗(·), while those in the top 1 percent account for 13.6 percent. Some
further detective work reveals that these are high inflation paths. The concentration
of importance weights below 1/2 means that many sample paths (approximately 1/3)
from p(·) are down-weighted in the sample from p∗(·). Draws from p(·) in the bottom
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quartile of the importance distribution account for only 6.7 percent of paths in p∗(·),
and those in the bottom decile account for only 1.6 percent.
The message in this graph, along with the statistics in table 2, is that the MPC

mean constraint is highly informative. Simulations of the benchmark BVAR produce
a collection of plausible sample paths for inflation. From that collection, the relative
entropy procedure emphasizes a few and disregards many others. This is not neces-
sarily a bad thing, but in view of the energetic twisting one would want a good story
to support the selection. The diagnostics are telling us that the Bank is boldly taking
a particular stand vis a vis the benchmark forecast. A prudent central banker would
ask his staff for convincing supporting evidence in the Bank’s other intelligence. If
such evidence could be assembled, one could proceed confidently with p∗(·). If not,
one would reformulate the constraints, looking for informative adjustments to p(·)
that could be supported.
Table 1 shows that the MPC mean constraint moves the relative entropy distri-

bution closer to the Bank’s outlook, especially at the 2-year horizon, but significant
differences remain at the 1-year horizon. Here the relative entropy distribution re-
mains more dispersed, with greater mass in both tails. For example, the Bank says
there is a 7 percent chance that inflation will fall below 2 percent at the 4-quarter
horizon, while the relative entropy distribution puts a 16 percent probability on this
outcome. The Bank also says the probability that inflation will exceed 3.5 percent is
9 percent, but according to the relative entropy distribution this occurs on 17 percent
of the sample paths.
How much twisting is needed to align the BVAR fan chart with the Bank’s pre-

dictive distribution? To match the two, we impose as constraints that the inflation
forecasts match both the MPC mean and variance.18 The results are shown in figures
13 and 14 and in the rows of tables 1 and 2 labelled ‘MPC Mean and Variance.’
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Figure 13: Relative Entropy Fan Chart for the MPC Mean and Variance Constraints
18Their skewness numbers were not needed to achieve a good match, and in any case they were

close to zero in this quarter.
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Table 1 shows that these constraints are sufficient to make the relative entropy
density conform with the Bank’s outlook. But figure 13 and table 2 again suggest
that a severe twisting of the BVAR density is needed to accomplish this. Two of
the diagnostics, the maximum importance ratio and the relative importance of the
10 largest weights, are actually smaller than in the previous example. The problem
is the KLIC, which is not only greater than before but also slightly larger than the
value for the problematic consumption-CAPM example of Robertson, et. al. It is the
high value of the KLIC that suggests a problem.
Once again, we dig deeper by examining the histogram for importance weights,

which is portrayed in figure 14. The pattern shown here is similar to that in figure
12, except that the upper tail is a bit shorter and the lower tail more concentrated
near zero. In this case, many sample paths from p(·) are assigned virtually no weight
at all in the sample from p∗(·). Draws from p(·) in the bottom half of the importance
distribution account for only 8.4 percent of the sample paths in p∗(·), while those in
the bottom quartile account for only 1.2 percent.
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Figure 14: Relative Entropy Weights for the MPC Mean and Variance Constraints

As before, the message is that this is a highly informative selection. Unless one
had good, external evidence to back up the constraints, the high value of the KLIC
and uneven distribution of importance weights would be a cause for reconsidering the
outlook.

6 Conclusion

This paper shows how to construct Bayesian fan charts from a random-coefficients
vector autoregression. The adaptive elements of our Bayesian VARmake it well suited
to characterizing inflation uncertainty in an economy in which monetary institutions
and policy are subject to ongoing change. Measures of core or target inflation, the
degree of inflation persistence, and the variance of shocks to inflation contribute to the
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size and shape of prediction intervals. Since our model is designed to track changes
in these features, the fan charts that it produces will adapt in size and shape as the
monetary system evolves.
We have illustrated our methods by constructing a variety of fan charts for U.K.

inflation for 2003 to 2008. Among other things, we find that parameter uncertainty
and drift matter only slightly for inflation forecasts one or two years ahead, the
forecast horizons upon which central banks usually focus; but their contribution to
inflation uncertainty grows as the forecast horizon lengthens, and they become quite
important for forecasts 4 or 5 years out. For characterizing the uncertainty associated
with long-term inflation forecasts, one should not take for granted that monetary
relations will remain unchanged. There have been important changes in the past,
and perhaps we should concede that important changes can happen again.
We have also reviewed how to sharpen BVAR forecasts by introducing outside

information and have given some examples to illustrate how to interpret some di-
agnostics. Our examples concerned elements of the Bank of England’s outlook for
2002.Q4. There are pronounced differences between the BVAR fan chart for that
quarter and the Bank’s forecasts. The BVAR intervals can be made to conform with
the Bank’s fan chart, but the relative entropy diagnostics point to a severe twisting of
the BVAR density. In cases of substantial twisting such as this, we would recommend
a careful review of the external evidence being used to twist the forecasts. The more
vigorous the twisting, the more persuasion seems called for.

A Simulating the BVARPosterior Predictive Den-
sity, p(Y T+1,T+F |Y T )

As outlined in the text, the BVAR predictive density is simulated in parts accord-
ing to the factorization in (5).

• p(ΘT ,ψ|Y T ) is simulated via the MCMC algorithm of Cogley and Sargent
(2002).

• Given a draw of (ΘT ,ψ) from this density, p(ΘT+1,T+F |ΘT ,ψ, Y T ) is simulated
by adapting one of the components of Cogley and Sargent (2001). In fact,
because of Θt is Markov, at this point one can marginalize with respect to the
history ΘT−1 and simulate p(ΘT+1,T+F |ΘT ,ψ, Y T ).

• Given a draw of (ΘT+F ,ψ) from the first two steps, p(Y T+1,H |ΘT+F ,ψ, Y T ) is
a VAR with known parameters, and it is simulated in the usual way.

• The nuisance parameters ΘT+F and ψ are then discarded, yielding a sample
from p(Y T+1,H |Y T ).
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A.1 Simulating p(ΘT ,ψ|Y T )
Cogley and Sargent (2002) show that

p(ΘT ,ψ|Y T ) ∝ I(ΘT )f(ΘT ,ψ|Y T ),

where f(ΘT ,ψ|Y T ) is the posterior corresponding to the model that does not impose
the stability constraint. Therefore a sample from p(ΘT ,ψ|Y T ) can be drawn by sim-
ulating f(ΘT ,ψ|Y T ) and discarding realizations that violate the stability constraint.
Further, they developed a MCMC algorithm for simulating f(ΘT ,ψ|Y T ).

A.1.1 MCMC for f(ΘT ,ψ|Y T )

The basic idea behind MCMC is to specify a Markov chain whose transition ker-
nel has a limiting distribution equal to the target posterior. The key to constructing
an appropriate Markov chain is to break the joint posterior into various conditional
distributions or submodels from which it is easy to sample. If implementable sam-
pling procedures can be devised for the full set of submodels, then one can construct
a Markov chain by cycling through simulations of each of them. The process of al-
ternating between draws from conditional distributions is a special case of MCMC
known as the ‘Gibbs sampler’ (Gelfand and Smith 1990). Remarkably, under mild
and verifiable regularity conditions, the stationary distribution of the Gibbs sam-
pler is the joint distribution of interest. Thus it is possible to sample from the joint
posterior without knowledge of its form.
In some cases, Bayes’s theorem delivers a convenient expression for a conditional

kernel but not the conditional density. For example, sometimes the normalizing con-
stant is too costly to compute.19 Gibbs sampling is infeasible in such cases, because
it requires the full set of conditional densities. But one can resort to hybrid MCMC
method known as ‘Metropolis-within-Gibbs’ that involves replacing some of the Gibbs
steps with Metropolis accept/reject steps. The latter typically involve the conditional
kernel instead of the conditional density, but the target posterior is still the station-
ary distribution of the chain. To design a Metropolis-Hastings step, one chooses a
‘proposal’ density which is cheap to simulate and which closely mimics the shape of
target and accepts or rejects with a certain probability, designed to make the proposal
sample conform to a sample from the target.
We compose a Metropolis-within-Gibbs sampler for the unrestricted Bayesian

VAR. The Markov chain cycles through 5 steps:

1. sample θT from f
¡
θT |Y T , HT , Q,σ, β

¢
,

2. sample Q from f
¡
Q|Y T , θT , HT ,σ, β

¢
,

19In our model this is true of the stochastic volatilities.
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3. sample β from f
¡
β|Y T , θT ,HT , Q,σ

¢
,

4. sample σ from f
¡
σ|Y T , θT , HT , Q,β

¢
,

5. for each i, draw {hit}Tt=1 by cycling through T Metropolis chains that target
f
¡
hit|h−it, Y T , θT ,σi

¢
, where h−it denotes the rest of the hi vector at dates

other than t.

VAR Coefficients, θT : Knowledge of the histories of volatility innovations hTi
and their contemporaneous correlation B implies knowledge of the measurement in-
novations variances RT . The joint density of the history of VAR innovations depends
on hTi and B only through RT . While sampling from f(θT |Y T , RT , Q) might seem
difficult because it is a high-dimensional distribution, we can use the efficient block-
sampling algorithm of Carter and Kohn (1994) and Fruhwerth-Schnatter (1994),
which is known as forward-filtering, backward-sampling.
This algorithm is an application of the Kalman filter. By repeated application of

Bayes’s theorem, the unrestricted density f
¡
θT |Y T , RT , Q

¢
can be factored as

f
¡
θT |Y T , RT , Q

¢
= f

¡
θT |Y T , RT , Q

¢ T−1Y
t=1

f
¡
θt|θt+1, Y t, RT , Q

¢
= N

¡
θT |T , PT |T

¢ T−1Y
t=1

N
¡
θt|t+1, Pt|t+1

¢
,

(43)

where

θt|t = E(θt|Y t, RT , Q),
θt|t+1 = E(θt|θt+1, Y t, RT , Q),
Pt|t = Var(θt|Y t, RT , Q),

Pt|t−1 = Var(θt|Y t−1, RT , Q),
Pt|t+1 = Var(θt|θt+1, Y t, RT , Q),

(44)

represent conditional means and variances of the unrestricted conditional transition
densities. The second line in (43) follows since the unrestricted state and measurement
transitions are conditionally normal and are fully characterized by their means and
variances defined in (44). These can be computed recursively starting from some
initial values by using the Kalman filter. We initialize the Kalman filter with the
prior mean and variance for θ0,

θ0|0 = θ̄,

P0|0 = P̄ .
(45)
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The forward Kalman filter then iterates on
Pt|t−1 =Pt−1|t−1 +Q,

Kt =Pt|t−1Xt
¡
X 0
tPt|t−1Xt +Rt

¢−1
,

θt|t =θt−1|t−1 +Kt

¡
yt −X 0

tθt−1|t−1
¢
,

Pt|t =Pt|t−1 −KtX
0
tPt|t−1,

(46)

where Kt is the Kalman gain. As t approaches T , the forward recursion delivers θT |T
and PT |T , pinning down the second term in (43).
To derive θt|t+1 and Pt|t+1, we use a backward recursion that updates conditional

means and variances to reflect the additional information about θt contained in θt+1.
Because θt is conditionally normal, this updating follows

θt|t+1 =θt|t + Pt|tP
−1
t+1|t

¡
θt+1 − θt|t

¢
,

Pt|t+1 =Pt|t − Pt|tP−1t+1|tPt|t.
(47)

A random trajectory for θT is generated alongside the backward recursion. θT
is drawn from N (θT |T , PT |T ). Then, conditional on its realization, (47) is used to
compute θT−1|T and PT−1|T and θT−1 can be drawn from N (θT−1|T , PT−1|T ), and so
forth back to the beginning of the sample.

Innovation Variance, Q: Conditional on the history of VAR coefficients θT

and observed data Y T , the measurement innovations ²t are observable. The other
conditioning variables are redundant in reconstructing the conditional distribution of
Q, because the random walk increment vt is uncorrelated with ²s and ηiτ . The prior
distribution of the covariance matrix Q is inverse-Wishart, with scale matrix Q̄ and
degrees of freedom T0:

f(Q) = IW(Q̄−1, T0). (48)

This is convenient because the combination of an inverse-Wishart prior with a nor-
mal likelihood yields an inverse-Wishart posterior (Kotz, Balakrishnan, and Johnson
2000),

f
¡
Q|Y T , θT

¢
= IW(Q−11 , T1), (49)

with the scale matrix Q1 and degrees of freedom T1:

Q1 = Q̄+
TX
t=1

vtv
0
t,

T1 = T0 + T.

(50)

To draw a random matrix from IW(Q−11 , T1), draw N(1 +NL)T1 random numbers
from the standard normal distribution, arrange it into a N(1 +NL)× T1 matrix u,
and set

Q =

µ
Q
−1/2
1 uu0

³
Q
−1/2
1

´0¶−1
. (51)
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Standard Deviation of the Volatility Innovations, σ: Here we are looking
for a way to draw from the full conditional distribution for σ = (σ1,σ2, . . . ,σN),

f
¡
σ
¯̄
Y T , θT ,HT , Q, β

¢
=

NY
i=1

f
¡
σi|hTi

¢
. (52)

The simplification afforded in (52) follows because volatility innovations are mutually
independent, and scaled volatility innovations, σiηit, can be directly computed using
only the hTi history via equation (25). All other conditioning variables either contain
information already encapsulated in HT ,20 or they are irrelevant as they only contain
information about random variables that are uncorrelated with volatility innovations.
The scaled volatility innovations are iid normal with mean zero and variance σ2i .

Our prior is that σ2i are independent inverse-gamma random variables,

f
¡
σ2i
¢
= IG(G0

2
,
δ0
2
), (53)

where G0 and δ0 are the degrees of freedom and scale parameters, respectively. Com-
bining normally distributed σiηit data with an inverse-gamma prior results in inverse-
gamma posterior (Johnson, Kotz, and Balakrishnan 1994),

f
¡
σ2i |hTi

¢
= IG(G1

2
,
δ1
2
), (54)

where

G1 =G0 + T,

δ1 =δ0 +
TX
t=1

(σiηit)
2 = δ0 +

TX
t=1

(∆ lnhit)
2.

(55)

This is a convenient distribution from which to sample.

Covariance of Volatility Innovations, β: Next, we consider the distribution
of β conditional on the data and other parameters

f
¡
β|Y T , θT ,HT , Q,σ

¢
. (56)

This distribution can be obtained from the relation (27), which can be viewed as
a system of unrelated regressions. Bayesian updating of regression coefficients is a
well established procedure. Denote βj as the nontrivial regression coefficients in j-th
20For example, B orthogonalizes Rt and therefore carries information about Ht, but this is re-

dundant given direct observations on Ht.
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equation in (27), j ≥ 2. Then, (27) can be rewritten as renormalized regressions with
independent standard normal residuals,

²jtp
hjt

= −
Ã
²1:j−1,tp
hjt

!0
βj +

εjtp
hjt
, j ≥ 2. (57)

It follows that

f
¡
β|Y T , θT , HT , Q,σ

¢
= f

¡
β|Y T , θT ,HT

¢
=

NY
j=2

f
¡
βj|θT , Y T , hTj

¢
. (58)

Many of the conditioning variables in (58) drop out because we only need θT and Y T

to recover ²t and hTj to normalize the residuals in (57). Independence of the elements
of εt implies that hTi , i 6= j are irrelevant for βj, and this justifies the second equality
in (58).
Assuming an independent normal prior for βj,

f (βj) = N (βj0, Vj0), (59)

the posterior is also normal (Judge, Lee, and Hill 1988),

f
¡
βj|θT , Y T , hTj

¢
= N (βj1, Vj1), j ≥ 2, (60)

where

Vj1 =

Ã
V −1j0 + ²1:j−1,1:T

Ã
1p
hj,1:T

!Ã
1p
hj,1:T

!0
²01:j−1,1:T

!−1

βj1 = Vj1

Ã
V −1j0 βi0 + ²1:j−1,1:T

Ã
1p
hj,1:T

!Ã
1p
hj,1:T

!0
²0j,1:T

!
.

(61)

Stochastic Volatilities, HT : Since the stochastic volatilities hit and hjτ are
independent for all j 6= i, t and τ , we can proceed on the univariate basis:

f
¡
hT1 , h

T
2 , . . . , h

T
N |Y T , θT , Q,σ,β

¢
=

NY
i=1

f
¡
hTi |Y T , θT , Q,σ,β

¢
. (62)

To sample from f
¡
hTi |Y T , θT , β

¢
, we exploit the univariate algorithm of Jacquier,

Polson and Rossi (1994), with some modifications.
Jacquier, et. al. adopted a date-by-date blocking scheme and developed the

conditional kernel for

f
¡
hit|h−it, Y T , θT ,ψ

¢
= f (hit|hit−1, hit+1, εit,σi) . (63)
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Equation (63) is based on the fact that hit−1, hit+1, εit and σi are sufficient statistics
for hit. Indeed, conditional on Y T , θT and β, we can infer the history of the orthog-
onalized VAR residuals εT . Knowledge of Q is redundant given θT . The variables
σj and hTj for j 6= i are irrelevant because the stochastic volatilities are independent
by assumption. Since {hit}Tt=1 is Markov, knowledge of hit−1, hit+1 and εit is suffi-
cient. The lognormal form of the volatility equation and the normal form for the
conditional sampling density imply (via application of Bayes theorem) the somewhat
unusual form for the univariate conditional density (63):

f (hit|hit−1, hit+1, εit,σi) ∝ f (εit|hit) f (hit|hit−1,σi) f (hit+1|hit,σi)

∝ h−3/2it exp

½
− ε2it
2hit
− (lnhit − µit)

2

2σ2i

¾
.

(64)

The variable µit is the conditional mean of lnhit implied by (25) and knowledge of
hit−1 and hit+1:

µit =
lnhit−1 + lnhit+1

2
. (65)

Here we combine both of the lognormal terms and complete the square on lnhit.
At the beginning and end of the sample, the formula (64) has to be modified

because only one of the adjacent values for hit is available, and also there is no
observed value of εi0. Suppose that the prior for lnhi0 is N (µ̄0, σ̄20). Then the
posterior conditional kernel becomes

f (hi0|hi1,σi) ∝ h−1i0 exp
½
−(lnhi0 − µi0)

2

2σ2ic

¾
, (66)

where

σ2ic =
σ̄20σ

2
i

σ̄20 + σ2i
,

µi0 = σ2ic

µ
µ̄0
σ̄20
+
hi1
σ2i

¶
.

(67)

Similarly, at the end of the sample the conditional kernel becomes

f (hiT |hiT−1, εT ,σi) ∝ h−3/2iT exp

½
− ε2iT
2hiT

− (lnhiT − lnhiT−1)
2

2σ2i

¾
. (68)

Direct sampling from (64), (66) and (68) is difficult because of the nonstandard
functional form. Notice also that right hand sides of (64), (66) and (68) are condi-
tional kernels, not conditional densities. There is no analytical expressions for the
normalizing constant, which itself is a function of conditioning arguments and varies
as the sampler proceeds. Therefore, a pure accept/reject sampling method is difficult
to apply. Instead, we adopt a Metropolis accept/reject sampler.
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Let f stand for the target conditional density, one of the (64), (66) or (68). A
Metropolis algorithm uses a proposal density q which is cheap to simulate and which
closely mimics the shape of f . We choose q to be the log-normal density implied by
the volatility equation,

q(hit) ∝ h−1it exp
½
−(lnhit − µit)

2

2σ2i

¾
, (69)

with obvious modifications for the beginning and end of sample.21 The acceptance
probability for the m-th draw can be computed as

αm =
f (εit|hmit )q(hmit )

q(hmit )

q(hm−1it )

f
¡
εit|hm−1it

¢
q(hm−1it )

=
(hmit )

−1/2 exp
n
− ε2it
2hmit

o
¡
hm−1it

¢−1/2
exp

n
− ε2it
2hm−1it

o . (70)

Therefore sampling of hmit proceeds as follows. Draw a trial value hit from (69), and
draw ξ from uniform distribution on [0, 1]. If ξ ≤ αm, accept the trial value, hmit = hit.
Otherwise set hmit = h

m−1
it .

A.1.2 Rejection Sampling

The algorithm outlined thus far delivers a sample from the posterior for the un-
restricted model. To enforce the stability constraint, we rely on rejection sampling.
At the end of each cycle of the Metropolis-within-Gibbs sampler, we compute the
VAR roots associated with draws of θt|T , and we discard the entire draw of the cycle
if there are explosive VAR roots at any date.

A.2 Simulating p(ΘT+1,T+F |ΘT ,ψ, Y T )
Having processed data through date T , the next step is to simulate the future

parameters. Conditional on the data, hyperparameters ψ, and terminal states θT ,
HT ,

22 the posterior density for future states is easy to compute. First, as for the
in-sample density, the restricted density can be expressed as

p(ΘT+1,T+F |ΘT ,ψ, Y T ) ∝ I(ΘT+1,T+F )f(ΘT+1,T+F |ΘT ,ψ, Y T ). (71)
21This is simpler than proposal of Jacquier, et. al. who use inverse-gamma proposal density.

Both proposal densities blanket the tails of true conditional density (64) which ensures geometric
convergence of MCMC algorithm, see Johannes and Polson (2002). On the other hand, Jacquier,
et. al. say the inverse-gamma proposal density is more efficient with regard to the rejection rate.
22Since VAR coefficients and stochastic volatilities are Markov, it is sufficient to know their current

values only, not the entire past history.
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We can therefore sample from f(ΘT+1,T+F |ΘT ,ψ, Y T ) and reject explosive realiza-
tions.
Second, because innovations to θt and ht are independent, f(ΘT+1,T+F |ΘT ,ψ, Y T )

can be factored as

f(ΘT+1,T+F |ΘT ,ψ, Y T ) = f
¡
θT+1,T+F |θT , HT ,ψ, Y T

¢
f
¡
HT+1,T+F |θT ,HT ,ψ, Y T

¢
,

(72)

=
YF

i=1
f (θT+i|θT+i−1, Q)

YF

i=1
f (HT+i|HT+i−1,σ) .

Apart from the restriction on explosive autoregressive roots, θT+1 is conditionally
normal with mean θT and variance Q. Similarly, conditional on θT+1 and Q, θT+2 is
normal with mean θT+1 and variance Q. Therefore, to sample future θT+i, we simply
draw vT+i from a N(0, Q) and iterate on

θT+i = θT+i−1 + vT+i, (73)

starting with θT . The stability restriction is then enforced by discarding explosive
draws.
In the same way, we draw future stochastic volatilities by starting with hiT and

iterating on the volatility equation,

lnhjT+i = lnhjT+i−1 + σiηjT+i, j = 1, . . . , N, (74)

with ηjT+i being drawn from a univariate standard normal distribution.

A.3 Simulating p(Y T+1,T+F |ΘT+F ,ψ, Y T )
All that remains is to simulate future data from p

¡
Y T+1,T+F |ΘT+F ,ψ, Y T

¢
, which

is the predictive density for a VAR with known coefficients. This can be factored as

p
¡
Y T+1,T+F |ΘT+F ,ψ, Y T

¢
=
YF

i=1
p
¡
yT+i|Y T+i−1,ΘT+i,ψ

¢
, (75)

by using the Markovian property and the observation equation. Conditional on HT+i
and ψ, the measurement innovation ²T+i is distributed normal with mean zero and
covariance RT+i = B−1HT+iB−10. Therefore, to sample from (75), we take random
draws of ²T+i from N (0, RT+i) for i = 1, . . . , F and iterate on the measurement
equation

yT+i = X
0
T+iθT+i + ²T+i, i = 1, . . . , F, (76)

using lags of yT+i to compute XT+i.
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B A Multinomial Resampling Algorithm

Suppose we have a sample Y T+1,T+Fi , i = 1, ..., Np, from p(·) as well as the asso-
ciated relative entropy weights π∗i . To obtain a sample from p∗(·), we associate with
every draw Y T+1,T+Fi a certain number of ‘children.’ Sample paths with large π∗i have
more offspring than those with small π∗i . Let NC represent the Npx1 vector that lists
the number of children associated with each draw from p(·). The total number of off-
spring is restricted so that

PNp
i=1NCi = Np∗, the predetermined number of elements in

the p∗(·) sample. It helps to set Np∗ > Np. The vector NC is a multinomial random
variable,

NC ∼MN(Np∗ ;π∗1,π∗2, ...,π∗Np), (77)

and a realization for NC is obtained by sampling from this distribution. Given this
realization, a sample from p∗(·) is constructed by making NCi copies of Y T+1,T+Fi ,
i = 1, ..., Np.
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