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Talk outline

From gaming to high performance scientific computing

Emergence of GPU as supercomputers on plug-in boards
Coding for NVIDIA GPUs

Case study: Dynamic programming solution of learning and active
experimentation problem

Future trends



What is GPU?

dedicated graphics rendering device

attached to plug-in board (video card) or directly to motherboard
does calculations related to 3D computer graphics

3D computer graphics is based on matrix and vector operations
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GPUs are fast and getting faster
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NVidia GTX280:
e has more transistors than people in China (1.4 Bn)
e can process 30,720 threads simultaneously
e 933 Gflops in single precision
e has memory bandwidth of 141.7 GB/sec




Why are GPUs so fast?

Commoditization of parallel computing
e GPUs specialize in data-parallel computation

e More transistors devoted to data processing instead of data caching and
flow control

Commodity industry & economies of scale

e gaming and entertainment
o over 100 million units shipped since mid-2007
e over 10 exaflops of sustained aggregate hardware performance

Competitive industry fuels innovation
o triumvirate ATI, NVIDIA and Intel



Pros and Cons

e Advantages

Speed

Programmability

Low cost

Massively parallel programming is inevitable anyway
e Abstracted a layer above "metal”

e Difficulties

e Programming model
e unusual
e tightly constrained (e.g. explicit memory management)
e hard to debug (race conditions, locks) and validate (floating point
arithmetic is not associative)
Rapidly evolving feature set
Double precision is significantly slower and only available since
mid-2008
Limited on-board memory
Proprietory/secret underlying architecture



Evolution of GPU programming model

Purely for graphics: OpenGL, DirectX
GPGPU - stream processing

Nvidia’s CUDA interface library

OpenCL - similar to CUDA but just for Nvidia



Non-gaming applications

Numerics

random number generation
linear algebra
fast Fourier transform

Physics

computational fluid dynamics
multi-body astrophysics
general relativistic evolution
weather forecasting

Computer science

Computer vision, pattern and speech recognition
Cryptography
Electronic design automation

Life sciences

protein folding

biomedical image analysis
artificial neural circuit simulations
DNA sequencing

Finance

option pricing
risk analysis and algorithmic trading



General purpose GPU Programming

Data parallel programming vs Task parallel programming
e Task parallel: threads have their own goal and task
o Data parallel: same block of code is run over multiple data points



NVIDIA CUDA

Compute Unified Driver Architecture

e Allows heterogeneous computation mixing code for CPU and GPU

e Based on shared memory model without explicit thread management

like OpenMP

e Consists of

runtime and function libraries

C/C++ development kit

extensions to C programming language
hardware abstraction mechanism

e CUDA-capable devices

GeForce 8 and newer
Tesla



Learning NVIDIA CUDA

Compute Unified Driver Architecture

e CUDA is taught in universities around the world




Computational economics case study

Dynamic programming solution of learning and active experimentation
problem

e Active learning problems require brute-force
e Dynamic programming is economics workhorse



Imperfect Information Control Problem
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Unknown g are characterized by prior and posterior beliefs

® Prior
p(B) = N (o, Xo)

® Posterior .
p(B1F1) = P(BI{xX;, Ui} j1) = N (e, Xi)

Known: state evolution parameters a, v € (—1, 1), o2 and preference parameters
6 €(0,1),w>0,X,0.

Stylized representation of problems under parameter/model uncertainty

® monetary/fiscal stabilization; exchange rate targeting; pricing of government debt;
trade policy

e monopolistic pricing with unknown demand

® natural resource extraction ...



Complete State Space Description

Bayesian learning dynamics over location and scale:
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Information state as of end-of-date t: Z; = (pr41, Z¢21)’
Information is endogenous state
Extended state S = X x Z C R®

Bayesian updating and observed state evolution form nonlinear mapping on extended state
B(-sxt—1,ut): S — S



Dynamic Programming Formulation

e Stationary Bellman Equation for continuation value (cost-to-go)

V(8) = min {L(St,uM)
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where L(S;, ut) is expected one-period loss and T[V] is Bellman functional
operator
e Exploration (learning) vs Exploitation (stabilization)

e T is a contraction mapping, value function iterations converge (Kiefer-Nyarko,
1989)

e Solution is two functions: optimal policy rule u* : S — R and corresponding
cost-to-go function V : S — R+



Why Is This Class of Problems Difficult?

Bayes law is nonlinear

State dimension increases rapidly with number of unknowns ("this method
founders on the reef of dimensionality”, R. Bellman 1956)

Cost-to-go function need not be convex
Policy function may have discontinuities
Optimal cost-to-go function may have kinks

Methods that rely on smoothness may fail in some parts of state: projection,
perturbation, non-adaptive Smolyak sparse grids

Unbounded state space



Simple Policy Alternatives

e Do-nothing policy: u=0

e a.k.a inert uniformative policy

e Cautionary myopic policy
e optimizes one-period-ahead expected loss

e Alternatives are useful for
e benchmarking value of experimentation
o test numerical codes for correctness without focus on policy optimality



Inert Uninformative Policy

Do-nothing policy
® | eaves posterior beliefs unchanged

e Cost-to-go function satisfies functional recursion

VO(x, 1, T) = (a4 yx — )_()2 + wi? + 02 + SEVO (a4 yX + 6,14, X)

Has closed-form cost-to-go function, quadratic in x

e Functional recursion can be used for approximate CPU- and GPU-based
computation, while closed form gives correctness check’

Yields analytic bounds on optimal policy
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Cautionary Myopic Policy

Optimize one-period-ahead expected loss
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e Actual cost-to-go under cautionary myopic policy satisfies
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e There is no closed form solution for VMYOP (x 1, ¥)
e Functional recursion can be iterated to convergence



CPU-based Computation

Sophisticated brute-forcing

® |nitial state box chosen by suboptimal policy simulations

® State box expanded until reflective boundary effects are small

® Multilinear interpolation on non-uniform product grid (discontinuities are near x; = x and
p=0)

® Parallel synchronous Gauss-Jacobi policy iteration for cost-to-go function approximation for
do-nothing and cautionary myopic policies until 1e-6 relative error

® Parallel synchronous Gauss-Jacobi value iteration for cost-to-go function approximation for
optimal policy until 1e-4 relative error

® Safeguarded univariate optimization with multiple starting points

® Fortran 90 with OpenMP on overclocked shared memory quadcore Core i7 with 8 GB RAM

® 40 min to 60 hrs depending on number of CPUs and policy for large grid with § = v = 0.9,
2=w=x"=10,a=u"=0



Scaling of CPU-based Computation

The problem is sufficiently parallel
e Scales almost linearly with number of processors
e Multiprocessing can be counterproductive at small problem sizes
e Memory can become a limiting factor at large problem sizes

cPU Inert Uninformative Myopic Optimal
Gridsize Grid points CPU Time Memory CPU Time Memory CPU Time Memory
Threads
Usage Usage Usage
1 0.10 15M 0.09 15M 1.43 16M
8x8x8 512 2 0.16 19M 0.15 19M 0.74 20M
4 0.27 28M 0.22 93M 0.57 94M
1 0.95 15M 1.01 15M 13.22 16M
16x16x16 4,096 2 0.47 19M 0.52 19M 7.03 86M
4 0.33 28M 0.35 94M 4.79 94M
1 8.42 16M 9.72 16M 122.68 18M
32x32x32 32,768 2 4.37 20M 4.97 20M 63.55 87M
4 2.71 94M 3.01 94M 37.56 96M
1 7717 24M 94.07 21M 1,085.47 29M
64x64x64 262,144 2 39.45 28M 47.5 91M 559.10 98M
4 21.73 99M 26.14 99M 344.43 103M
1 798.45 81M 962.46 64M 9,972.39 111M
128x128x128 2,097,152 2 392.26 85M 491.41 68M 5,300.80 179M
4 211.18 93M 270.37 138M 3,131.72 187M
1 7,368.56 526M 9,880.06 398M 98,809.89 783M
256x256x256 16,777,216 2 3,759.02 530M 5,159.7 402M 51,161.30 787TM

4 2,016.57 602M 2,855.14 474M 29,972.30 860M




Scaling of CPU-based Computation

® Scaling with CPU threads is sub-linear
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GPU-based Computation: High-level Overview

Same approach as for CPU except
e Based on C, not Fortran

o Nested loop over gridpoints to evaluate RHS of Bellman equation
is replaced by a call to kernel function
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From OpenMP to CUDA

F90 Code

! set multithreaded OpenMP version using all available CPUs
#ifdef _OPENMP

call OMP_SET_NUM_THREADS (numthreads)
#endif

allocate (V (NX,Nmu, NSigma, 2), U (NX,Nmu, NSigma) )
do while((ip<MaxPolIter+l).and. (ppass.eq.0))

! loop over the grid of the three state variables

1Somp parallel default (none) &

1Somp shared (NX, Nmu, NSigma, U, V, X, mu, Sigma, alpha, gamma, delta, omega, ustar, xstar, sigmasg_epsilon)

1$omp private (i, j, k)

1Somp do

do i=1,NX

do j=1,Nmu
do k=1,NSigma
V(i,J,k,2) = F(U(i,3,k),i,3,k,V)
enddo
enddo

enddo

1Somp end do

1Somp end parallel

enddo

&




From OpenMP to CUDA

CUDA Code

cudaMalloc ( (voidsx) &d_X,NX+sizeof (double));
cudaMemcpy (d_X, X, NX*sizeof (double), cudaMemcpyHostToDevice) ;

numBlocks=512;
numThreadsPerBlock=180;

dim3 dimGrid (numBlocks) ;

dim3 dimBlock (numThreadsPerBlock) ;

while ((ip<MaxPolIter+1)s&& (ppass==0))
{
// update expected cost-to-go function on the whole grid (in parallel)
UpdateExpectedCTG_kernel<<<dimGrid, dimBlock>>>(d_U, d_X,d_mu,d_Sigma,d_v0,d_rno,d_wei,d_V1);
cudaThreadSynchronize () ;

// move the data from device to host to do convergence checks
cudaMemepy (V1,d_V1, NX+Nmu+NSigmaxsizeof (double), cudaMemcpyDeviceToHost) ;

// update value function, directly on the device

cudaMemcpy (d_V0,d_V1, NX+NmusNSigmassizeof (double), cudaMemcpyDeviceToDevice) ;
// update value function on host as well

cudaMemcpy (V0, V1, NX+*NmusNSigmassizeof (double), cudaMemcpyHost ToHost) ;

)

cutStopTimer (timer) ;

gputime = cutGetTimerValue (timer);
printf("Elapsed GPU Time %5.7f ms.",gputime);
cudaFree (d_X) ;




From OpenMP to CUDA

CUDA Kernel Code

__device__ inline double UpdateExpectedCTG (double u, double x, double mu, double Sigma,
double alpha, double gamma, double delta, double omega, double sigmasq_epsilon,
double xstar, double ustar, int NX,int Nmu, int NSigma, int NGH, doublex XGrid,
doublex muGrid, double* SigmaGrid, double* V, double* rno, doublex wei);

__global__ void UpdateExpectedCTG_kernel (doublex U,double* X,doublex mu,
double* Sigma,doublex V0,doublex rno,double* wei,doublex V1)

//Thread index

const int tid = blockDim.x * blockIdx.x + threadIdx.x;
const int NUM_ITERATION= dc_NXsdc_Nmusdc_NSigma;

int ix, jmu, kSigma;

//Total number of threads in execution grid
const int THREAD_N = blockDim.x % gridDim.x;

//ech thread works on as many points as needed to update the whole array
for (int i=tid;i<NUM_ITERATION;i+=THREAD_N)
{
//update expected cost-to-go point-by-point
ix=1i/ (dc_NSigmaxdc_Nmu) ;
jmu=(i-ix+dc_Nmuxdc_NSigma) /dc_NSigma;
kSigma=i-ix+dc_Nmusdc_NSigma-3jmusdc_NSigma;
V1[i]=UpdateExpectedCTG(U[i],X[ix],mu[jmu], Sigma[kSigmal,dc_alpha,
dc_gamma, dc_delta,dc_omega, dc_sigmasqg_epsilon,dc_xstar,dc_ustar,
dc_NX, dc_Nmu, dc_NSigma, dc_NGH, X, mu, Sigma, V0, rno, wei) ;




Speed Comparisons

® Double precision should be 8 times slower but it isn’t
® Single precision requires 10%-50% more iterations to convergence, especially for finer grids

Single Precision Timings

Polic! Gridsize Grid Points
Y CcPU; CcPU, ey S s
8x8x8 512 0.114 0.723 0.176 0.65 4.11
Inert 16x16x16 4,096 0.735 0.689 0.216 3.40 318
Uninformative 32x32x32 32,768 7.039 2.669 0.345 20.40 7.74
Policy 64x64x64 262,144 74.250 25.319 4.598 16.15 5.51
128x128x128 2,097,152 748.119 223,696 38.197 19.59 5.86
256x256x256 16,777,216 6,400.123 1,950.315 314.495 20.35 6.20
8x8x8 512 0.09 0.521 0.172 0.52 3.02
16x16x16 4,096 1.100 0.806 0.222 4.95 363
Cautionary 32x32x32 32,768 11.397 4.056 0.869 13.12 4.67
Myopic Policy 64x64x64 262,144 124.663 40.941 6.935 17.98 5.90
128x128x128 2,097,152 1,218.964 383.088 78.809 16.36 4.87
256x256x256 16,777,216 13,739.599 4,161.66 1,494.84 9.19 2.78
8x8x8 512 1.639 0.633 1.181 1.39 0.54
16x16x16 4,096 16.105 5.287 1.764 9.13 3.00
Optimal Policy 32x32x32 32,768 153.816 48.754 9.357 16.44 5.21
64x64x64 262,144 1,413.794 422.316 69.109 20.46 6.11
128x128x128 2,097,152 16,783.030 5,200.646 829.216 20.24 6.27
256x256x256 16,777,216 198,708.900  61,810.338  13,466.169 14.76 4.59




Double Precision

Double Precision Timings

Polic: Gridsize Grid Points
Y CcPU; CcPU, eru 1 P
8x8x8 512 0.096 0.27 0.195 0.51 1.38
nert 16x16x16 4,096 0.95 0.33 0.295 3.22 1.12
Uninformative 32x32x32 32,768 8.42 2.71 1.058 7.96 2.56
Policy 64x64x64 262,144 7717 21.73 7.554 10.22 2.88
128x128x128 2,097,152 798.45 211.18 61.159 13.06 3.45
256x256x256 16,777,216 7368.56 2016.57 511.300 14.41 3.94
8x8x8 512 0.094 0.22 0.197 0.48 1.12
16x16x16 4,096 1.01 0.35 0.309 3.27 1.13
Cautionary 32x32x32 32,768 9.72 3.01 1.094 8.88 2.75
Myopic Policy 64x64x64 262,144 94.07 26.14 8.12 11.59 3.22
128x128x128 2,097,152 962.46 270.37 90.453 10.64 2.99
256x256x256 16,777,216 9,880.06 2,855.14  1,280.381 7.72 2.23
8x8x8 512 1.43 0.57 1.564 0.91 0.36
16x16x16 4,096 13.22 4.79 3.180 416 1.51
Optimal Policy 32x32x32 32,768 122.68 37.56 12.959 9.47 2.90
64x64x64 262,144 1,085.47 344.43 85.683 12.67 4.02
128x128x128 2,097,152 997239  3,131.724 648.598 15.38 4.83
256x256x256 16,777,216 98,253.32  29,972.30  6,930.597 14.18 4.32




Performance Scaling

® Thread creation/destructon outweighs performance for small problems

® Memory is the limiting factor for all approaches

Grid Points Per Second Grid Points Per Second
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GPU versus CPU

® Achieving 20x speedup with CPU would be much costlier
® GPU is only worth the effort for moderately large problems

GPUICPU speedup
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Limiting factors
® Limited by registers per microprocessor (low occupancy)
® Optimize occupancy via choice of blocksizes

® Memory bandwidth

GPU Performance Profiling

Non-coherent

Policy Computation GPU Time Average Memory i Registers Global Memory Divergent
Occupancy Transfer Size per Thread Loads Branches
GPU—CPU
memory copy 0.148 2,097,152
Kernel
[ % %
Pgﬁ::‘y Evootion 5.400 18.8% 71 0.75%
GPU— GPU
memory copy 0.000
CPU—GPU
memory copy 0.074 2,097,152
GPU—CPU
memory copy 0.148 2,007,152
Kernel
% al %
Cautionary __Exeeution 5.950 18.8% 5.21%
Myopic GPU—GPU
Policy memory copy 0.000
CPU—GPU
mermory copy 0.074 2,007,152
GPU—CPU
memory copy 0.050 2,097,152
Kernel. 84.260 125% 122 3.89%
Optimal Execuuogpu
Policy GPU—
memory copy 0.007
CPU—GPU 0.001 2,097,152

memory copy




Odds and Ends

Performance left on the table
e Non-specific

® Asynchronous Gauss-Seidel sweeps can speed convergence and reduce memory
usage
e Can combine value iterations with policy evaluation iterations
e CUDA-specific
® Norm comparison is on CPU and is inefficient
® Tune register use using compiler switch

e Advanced CUDA

e Multilinear interpolation can use textures
® Pinned memory to overlap computation and communication
® Atomic functions to reduce memory scattering

e GUI is less responsive during runs unless multiple cards or Tesla cards
used



Conclusions

We learned
e Low hanging fruit is still available
e CUDA is easy to pick up but hard to push to the limit

e Must rethink your algorithms to be aggressively parallel

® not just a good idea, but the only way
e otherwise, if it is not fast enough, it will never be

Future trends
e Computers no longer get faster, just wider

e Easier and more flexible programming tools
e PGl compilers with support for accelerator directives coming soon

e Heterogeneous computing
e Competing standards, hardware and tools



